列方程解應用題:
A、B兩地的距離是80公里,一輛公共汽車從A地駛出3小時后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達B地,求兩車的速度.
分析:設公共汽車的速度為x公里/小時,則小汽車的速度是3x公里/小時.根據(jù)題意,知小汽車所用的時間比公共汽車所用的時間少3小時-20分=
8
3
小時,列方程求解.
解答:解:設公共汽車的速度為x公里/小時,則小汽車的速度是3x公里/小時.
依題意,得
80
x
=
80
3x
+3-
1
3

解,得
x=20.
經(jīng)檢驗x=20是原方程的根,且符合題意.
∴3x=60.
答:公共汽車和小汽車的速度分別是20公里/時,60公里/時.
點評:找到合適的等量關系是解決問題的關鍵.利用分式方程解應用題時,一般題目中會有兩個相等關系,這時要根據(jù)題目所要解決的問題,選擇其中的一個相等關系作為列方程的依據(jù),而另一個則用來設未知數(shù).
此題中關鍵是弄清兩車的時間關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

列方程解應用題:
(1)某文藝團體組織了一場義演為“希望工程”募捐,共售出1000張門票,已知成人票每張8元,學生票每張5元,共得票款6950元,成人票和學生票各幾張
(2)某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤可達4500元;經(jīng)精加工后銷售,每噸利潤漲至7500元.當?shù)匾患肄r(nóng)工商公司收獲這種蔬菜140噸,該公司加工的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行.受季節(jié)等條件限制,公司必須在15天內將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案.
方案一:將蔬菜全部進行精加工.沒來得及進行精加工的直接出售
方案二:盡可能多地對蔬菜進行粗加工,沒有來得及進行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程解應用題:某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經(jīng)過市場調查,發(fā)現(xiàn)這種商品的單價每降低1元,其銷售量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)求后來該商品每件降價多少元時,商場一天可獲利潤2160元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程解應用題:某農(nóng)場今年1月某種作物的產(chǎn)量為5000噸,3月上升到7200噸,這兩個月平均每月增長的百分率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程解應用題:
隨著人們節(jié)能意識的增強,節(jié)能產(chǎn)品的銷售量逐年增加.某商場高效節(jié)能燈的年銷售量2009年為5萬只,預計2011年年銷售量將達到7.2萬只.求該商場2009年到2011年高效節(jié)能燈年銷售量的平均增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程解應用題
從A地到B地的路程是30千米.甲騎自行車從A地到B地先走,半小時后,乙騎自行車從A地出發(fā),結果二人同時到達.已知乙的速度是甲的速度的1.5倍,求甲、乙二人騎車速度各是多少?

查看答案和解析>>

同步練習冊答案