如圖,在△ABC中,∠BAC=90°,D是BC中點,AE⊥AD交CB的延長線于E,則下列結論正確的是( )
A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC
【答案】分析:先利用直角三角形斜邊上的中線等于斜邊的一半得到DA=DC,則∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,
從而有∠EAB=∠C,再加上公共角即可判斷△BAE∽△ACE.
解答:解:∵∠BAC=90°,D是BC中點,
∴DA=DC,
∴∠DAC=∠C,
又∵AE⊥AD,
∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,
∴∠EAB=∠DAC,
∴∠EAB=∠C,
而∠E是公共角,
∴△BAE∽△ACE
故選C.
點評:此題主要考查學生對相似三角形判定定理的掌握和應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案