【題目】如圖,在△ABC中,點D是BC的中點,連接AD,E,F分別是AD和AD延長線上的點.且DE=DF,連接BF,CE,下列說法中:①△ABD和△ACD的面積相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正確的說法有__________(填序號)
【答案】①③
【解析】
根據三角形中線的定義可得BD=CD,根據等底等高的三角形的面積相等判斷出①正確,然后利用“邊角邊”證明△BDF和△CDE全等,根據全等三角形對應邊相等可得CE=BF,全等三角形對應角相等可得∠F=∠CED,再根據內錯角相等,兩直線平行可得BF∥CE.
解:∵AD是△ABC的中線,
∴BD=CD,
∴△ABD和△ACD面積相等,故①正確;
∵AD為△ABC的中線,
∴BD=CD,∠BAD和∠CAD不一定相等,故②錯誤;
在△BDF和△CDE中,
∵,
∴△BDF≌△CDE(SAS),
∴∠F=∠DEC,
∴BF∥CE,故③正確;
∵△BDF≌△CDE,
∴CE=BF,故④錯誤,
正確的結論為:①③,
故答案為:①③.
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2 ,∠C=120°,以點C為圓心的 與AB,AD分別相切于點G,H,與BC,CD分別相交于點E,F.若用扇形CEF作一個圓錐的側面,則這個圓錐的高是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九年級數學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數據:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y= x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣ x+1與y軸交于點D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結論:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的結論有
A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com