【題目】如圖,在正方形ABCD中,,AE、BF交于點(diǎn)G,下列結(jié)論中錯誤的是( )
A.B.C.D.
【答案】C
【解析】
根據(jù)正方形的性質(zhì)證明△ABE≌△BCF,可得AE⊥BF;AE=BF,再證明△BGE∽△ABE,可得,得出;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG.
在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF.
故A、B正確;
∵CF=2FD,∴CF:CD=2:3,
∵BE=CF,AB=CD,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAG,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
故C不正確
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE-S△BEG=S△BFC-S△BEG,
∴S四邊形CEGF=S△ABG,
故D正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價(jià),才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,,,P為邊BC上一動點(diǎn), 于E,于F,M為EF的中點(diǎn),則AM的最小值是( )
A.2.5B.2.4C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,拋物線(b為常數(shù))的對稱軸是直線x=1.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)A(8,m)在該拋物線上,它關(guān)于該拋物線對稱軸對稱的點(diǎn)為A',求點(diǎn)A'的坐標(biāo);
(3)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在如圖5所示的平面直角坐標(biāo)系內(nèi)描點(diǎn),畫出該拋物線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是對角線上的一個動點(diǎn),連接,過點(diǎn)作交于點(diǎn).
(1)如圖①,求證:;
(2)如圖②,連接為的中點(diǎn),的延長線交邊于點(diǎn),當(dāng)時(shí),求和的長;
(3)如圖③,過點(diǎn)作于,當(dāng)時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,的邊BC在直線n上,過頂點(diǎn)A作直線m∥n,在直線m上任取一點(diǎn)D連接BD,CD,則的面積_______的面積(填“等于”大于”或“小于”)
問題探究
(2)如圖2,在菱形ABCD和菱形BGFE中,,求的面積.
問題解決
(3)如圖3在矩形ABCD中,,在矩形ABCD內(nèi)(可以在邊上)存在點(diǎn)P,使得的面積等于矩形ABCD的面積的,求周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).
(1)將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到對應(yīng)線段BE.當(dāng)BE與CD第一次平行時(shí),畫出點(diǎn)A運(yùn)動的路徑,并直接寫出點(diǎn)A運(yùn)動的路徑長;
(2)線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個角度可以得到另一條線段,直接寫出這個旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點(diǎn)E在邊AD上,,過點(diǎn)E作EF//AB交邊BC于點(diǎn)F.
(1)求線段EF的長;
(2)設(shè),,聯(lián)結(jié)AF,請用向量表示向量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com