如圖,邊長(zhǎng)為6的正方形ABCD內(nèi)部有一點(diǎn)P,BP=4,∠PBC=60°,點(diǎn)Q為正方形邊上一動(dòng)點(diǎn),且△PBQ是等腰三角形,則符合條件的Q點(diǎn)有         個(gè).

 

【答案】

5

【解析】

試題分析:邊長(zhǎng)為6的正方形ABCD內(nèi)部有一點(diǎn)P,BP=4,∠PBC=60°,因?yàn)锽P=4<6,所以點(diǎn)Q為正方形邊上一動(dòng)點(diǎn),且△PBQ是等腰三角形,則Q點(diǎn)在正方形ABCD邊上的情況有,當(dāng)Q點(diǎn)在AB、BC邊上且以BP為腰的Q點(diǎn)共有2個(gè);邊長(zhǎng)為6的正方形ABCD內(nèi)部有一點(diǎn)P,BP=4,∠PBC=60°,BP在AB、BC邊上的投影分別為、2,Q點(diǎn)在CD邊上且以BP為腰的Q點(diǎn)有1個(gè),因?yàn)镻點(diǎn)到AD的距離為,所以在AD上有兩點(diǎn)能使△PBQ是等腰三角形,因此Q點(diǎn)在CD、AD邊上且以BP為腰的Q點(diǎn)共有3個(gè);綜上所述,符合條件的Q點(diǎn)有5個(gè)

考點(diǎn):正方形,等腰三角形,三角函數(shù)

點(diǎn)評(píng):本題考查正方形,等腰三角形,三角函數(shù),解答本題需要掌握正方形,等腰三角形的性質(zhì),熟悉三角函數(shù)的定義,利用三角函數(shù)的定義來(lái)解答

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為
π2
的正△ABC,點(diǎn)A與原點(diǎn)O重合,若將該正三角形沿?cái)?shù)軸正方向翻滾一周,點(diǎn)A恰好與數(shù)軸上的點(diǎn)A′重合,則點(diǎn)A′對(duì)應(yīng)的實(shí)數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖將邊長(zhǎng)為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點(diǎn)P依次落在點(diǎn),,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新人教版九年級(jí)(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案