已知,且相似比為,若邊上的中線,則邊上的中線=        
6.

試題分析:因?yàn)椤鰽BC∽△DEF,相似比為4:3,根據(jù)相似三角形對(duì)應(yīng)中線的比等于相似比,即可求解.
∵△ABC∽△DEF,相似比為4:3,
∴△ABC中BC邊上的中線:△DEF中EF邊上的中線=4:3,
∵△ABC中BC邊上的中線AM=8,
∴△DEF中EF邊上的中線DN=6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點(diǎn)P.有下列結(jié)論:
①∠DEO=45°;
②△AOD≌△COE;
③S四邊形CDOE =S△ABC;

其中正確的結(jié)論序號(hào)為          .(把你認(rèn)為正確的都寫上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點(diǎn)G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=∠BAF,AF=AD,請(qǐng)你判斷線段FM和FN之間的數(shù)量關(guān)系,并證明你的判斷是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下列四個(gè)結(jié)論:①兩個(gè)正三角形相似;②兩個(gè)等腰直角三角形相似;③兩個(gè)菱形相似;④兩個(gè)矩形相似;⑤兩個(gè)正方形相似,其中正確的結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ABC與△DEF相似且面積比為4︰9,則△ABC與△DEF的相似比為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知零件的外徑為30 mm,現(xiàn)用一個(gè)交叉卡鉗(兩條尺長(zhǎng)AC和BD相等,OC=OD)測(cè)量零件的內(nèi)孔直徑AB.若OC∶OA=1∶2,且量得CD=12 mm,則零件的厚度x=____________mm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為4,E、F分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),且AE⊥EF.則AF的最小值是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整,原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.若=3,求的值.

(1)嘗試探究:
在圖1中,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是________,
CG和EH的數(shù)量關(guān)系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若=m(m>0)則的值是________(用含有m的代數(shù)式表示),試寫出解答過(guò)程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長(zhǎng)線上的一點(diǎn),AE和BD相交于點(diǎn)F,若=a,=b(a>0,b>0)則的值是________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,長(zhǎng)方形ABCD中,AB=4,AD=3,E是邊AB上一點(diǎn)(不與A、B重合),F(xiàn)是邊BC上一點(diǎn)(不與B、C重合).若△DEF和△BEF是相似三角形,則CF=       

查看答案和解析>>

同步練習(xí)冊(cè)答案