如圖1,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)A(﹣6,0),過(guò)點(diǎn)E(﹣2,0)作EF∥AB,交BO于F;
(1)求EF的長(zhǎng);
(2)過(guò)點(diǎn)F作直線(xiàn)l分別與直線(xiàn)AO、直線(xiàn)BC交于點(diǎn)H、G;
①根據(jù)上述語(yǔ)句,在圖1上畫(huà)出圖形,并證明;
②過(guò)點(diǎn)G作直線(xiàn)GD∥AB,交x軸于點(diǎn)D,以圓O為圓心,OH長(zhǎng)為半徑在x軸上方作半圓(包括直徑兩端點(diǎn)),使它與GD有公共點(diǎn)P.如圖2所示,當(dāng)直線(xiàn)l繞點(diǎn)F旋轉(zhuǎn)時(shí),點(diǎn)P也隨之運(yùn)動(dòng),證明:,并通過(guò)操作、觀察,直接寫(xiě)出BG長(zhǎng)度的取值范圍(不必說(shuō)理);
(3)在(2)中,若點(diǎn)M(2,),探索2PO+PM的最小值.
(1)2
(2)①見(jiàn)解析 ②見(jiàn)解析
(3)8
【解析】
試題分析:(1)利用正方形與平行線(xiàn)的性質(zhì),易求線(xiàn)段EF的長(zhǎng)度.
(2)①首先依題意畫(huà)出圖形,如答圖1所示.證明△OFH∽△BFG,得;由EF∥AB,得.所以。
②由OP=OH,則問(wèn)題轉(zhuǎn)化為證明,根據(jù)①中的結(jié)論,易得,故問(wèn)題得證。
(3)本問(wèn)為探究型問(wèn)題,利用線(xiàn)段性質(zhì)(兩點(diǎn)之間線(xiàn)段最短)解決,如答圖2所示,構(gòu)造矩形,將2PO+PM轉(zhuǎn)化為NK+PM,由NK+PM≥NK+KM,NK+KM≥MN=8,可得當(dāng)點(diǎn)P在線(xiàn)段MN上時(shí),2OP+PM的值最小,最小值為8。
解:(1)在正方形OABC中,∠FOE=∠BOA=∠COA=45°。
∵EF∥AB,∴∠FEO=∠BAO=90°!唷螮FO=∠FOE=45°。
又E(﹣2,0),∴EF=EO=2。
(2)①畫(huà)圖,如答圖1所示。
證明:∵四邊形OABC是正方形,∴OH∥BC。
∴△OFH∽△BFG!。
∵EF∥AB,∴。
∴。
②證明:∵半圓與GD交于點(diǎn)P,∴OP=OH。
由①得:,
又EO=2,EA=OA﹣EO=6﹣2=4,
∴。
通過(guò)操作、觀察可得,4≤BG≤12。
(3)由(2)可得:,
∴2OP+PM=BG+PM。
如答圖2所示,過(guò)點(diǎn)M作直線(xiàn)MN⊥AB于點(diǎn)N,交GD于點(diǎn)K,則四邊形BNKG為矩形。
∴NK=BG。
∴2OP+PM=BG+PM=NK+PM≥NK+KM,當(dāng)點(diǎn)P與點(diǎn)K重合,即當(dāng)點(diǎn)P在直線(xiàn)MN上時(shí),等號(hào)成立。
又∵NK+KM≥MN=8,當(dāng)點(diǎn)K在線(xiàn)段MN上時(shí),等號(hào)成立。
∴當(dāng)點(diǎn)P在線(xiàn)段MN上時(shí),2OP+PM的值最小,最小值為8。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫(xiě)下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).
(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對(duì)稱(chēng)問(wèn)題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.
如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱(chēng).
(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱(chēng)時(shí),除了說(shuō)明P、、三點(diǎn)共線(xiàn)之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com