如圖,已知在等腰△ABC中,∠A=∠B=30°,過點(diǎn)C作CD⊥ AC交AB于點(diǎn)D.
(1)尺規(guī)作圖:過A,D,C三點(diǎn)作⊙O(只要求作出圖形, 保留痕跡,不要求寫作法);
(2)求證:BC是過A,D,C三點(diǎn)的圓的切線;
(3)若過A,D,C三點(diǎn)的圓的半徑為,則線段BC上是否存在一點(diǎn)P,使得以P,D,B為頂點(diǎn)的三角
形與△BCO相似.若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說明理由.
解:(1)作出圓心O,
以點(diǎn)O為圓心,OA長(zhǎng)為半徑作圓
(2)證明:∵CD⊥AC,∴∠ACD=90°.
∴AD是⊙O的直徑
連結(jié)OC,∵∠A=∠B=30°,
∴∠ACB=120°,又∵OA=OC,
∴∠ACO=∠A =30°,
∴∠BCO=∠ACB-∠ACO =120°-30°=90°.
∴BC⊥OC,
∴BC是⊙O的切線.
(3)存在.
∵∠BCD=∠ACB-∠ACD=120°-90°=30°,
∴∠BCD=∠B, 即DB=DC.
又∵在Rt△ACD中,DC=AD, ∴BD= .
解法一:①過點(diǎn)D作DP1// OC,則△P1D B∽△COB, ,
∵BO=BD+OD=,
∴P1D=×OC=× =.
②過點(diǎn)D作DP2⊥AB,則△BDP2∽△BCO, ∴,
∵BC=
∴.
解法二:①當(dāng)△B P1D∽△BCO時(shí),∠DP1B=∠OCB=90°.
在Rt△B P1D中,
DP1=.
②當(dāng)△B D P2∽△BCO時(shí),∠P2DB=∠OCB=90°.
在Rt△B P2D中,
DP2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com