已知:AC是⊙O的直徑,PA⊥AC,連結(jié)OP,弦CB//OP,直線(xiàn)PB交直線(xiàn)AC于點(diǎn)D,BD=2PA.

1.證明:直線(xiàn)PB是⊙O的切線(xiàn);

2.探索線(xiàn)段PO與線(xiàn)段BC之間的數(shù)量關(guān)系,并加以證明

3.求sin∠OPA的值.

 

 

1.見(jiàn)解析

2.2PO=3BC

3.

解析:連結(jié)OB.∵BC//OP,

∴∠BCO=∠POA,∠CBO=∠POB.

又∵OC=OB,∴∠BCO=∠CBO,

∴∠POB=∠POA.-----------------------------------------------------------------1分

又∵PO=PO,OB=OA,

∴△POB≌△POA.

∴∠PBO=∠PAO=90°.

∴PB是⊙O的切線(xiàn).-----------------------------------------------------------2分

(2)2PO=3BC(寫(xiě)PO=BC亦可).

證明:∵△POB≌△POA,∴PB=PA.

∵BD=2PA,∴BD=2PB.-----------------------------------------------3分

∵BC//OP,∴△DBC∽△DPO.

.∴2PO=3BC.----------------------------------5分

注:開(kāi)始沒(méi)有寫(xiě)出判斷結(jié)論,正確證明也給滿(mǎn)分.

(3)∵△DBC∽△DPO,∴,即DC=OD.∴DC=2OC.----6分

設(shè)OA=x,PA=y.則OD=3x,DB=2y.

在Rt△OBD中,由勾股定理,得(3x)2=x2+(2y)2.即2 x2= y2

∵x>0,y>0,∴y=x.OP=.------------------------------------------7分

∴sin∠OPA=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線(xiàn)y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC是等邊三角形,點(diǎn)D是射線(xiàn)BC上一動(dòng)點(diǎn)(直D不與B、C重合),以AD為邊在AD的左側(cè)作等邊△ADE,過(guò)點(diǎn)E作BC的平行線(xiàn)交射線(xiàn)AB、AC于點(diǎn)F、G.
(1)當(dāng)點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)時(shí),判斷四邊形BCGE是什么四邊形?說(shuō)明理由;
(2)當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),(1)中的兩個(gè)結(jié)論還成立嗎?
(3)當(dāng)點(diǎn)D在什么位置時(shí),四邊形BCGE是菱形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線(xiàn)段AB中垂線(xiàn)上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直數(shù)學(xué)公式與雙曲線(xiàn)數(shù)學(xué)公式相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年西藏中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,直與雙曲線(xiàn)相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案