分析 由∠A的度數(shù)求出∠ADO度數(shù),利用30°直角三角形的性質(zhì)求出BC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),陰影部分面積=直角三角形ABC面積-扇形OCD面積-三角形AOD面積,求出即可.
解答 解:連接半圓圓心O與D,過(guò)點(diǎn)O作OE⊥AB,
在Rt△ABC中,∠B=30°,AC=2,
∴∠COD=60°,BC=2$\sqrt{3}$
∴OB=$\sqrt{3}$,
∴OE=$\frac{\sqrt{3}}{2}$,BE=$\frac{3}{2}$,
∴BD=3,
則S陰影=S△ABC-S扇形COD-S△BOD=$\frac{1}{2}$×2×2$\sqrt{3}$-$\frac{60•π•(\sqrt{3})^{2}}{360}$-$\frac{1}{2}$×3×$\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{4}$-$\frac{π}{2}$,
故答案為:$\frac{5\sqrt{3}}{4}$-$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查了扇形面積的計(jì)算,涉及的知識(shí)有:等腰三角形的性質(zhì),含30°直角三角形的性質(zhì),以及勾股定理,熟練掌握扇形面積公式S=$\frac{nπ{r}^{2}}{360}$是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com