-12-(-10)÷
1
2
×2+(-4)3
原式=-1-(-10)×2×2+(-64)
=-1-(-40)+(-64)
=-1+40-64
=-25.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,小明作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積.然后分別取△A1B1C1三邊的中點A2、B2、C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積.用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第10個正△A10B10C10的面積是( 。
A、
3
4
×(
1
4
)
9
B、
3
4
×(
1
4
)
10
C、
3
4
×(
1
2
)
9
D、
3
4
×(
1
2
)
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某校團委組織了“歌唱祖國”有獎征文活動,并設立了一、二、三等獎.學校計劃派人根據(jù)設獎情況買50件獎品,其中二等獎件數(shù)比一等獎件數(shù)的2倍還少10件,三等獎所花錢數(shù)不超過二等獎所花錢數(shù)的1.5倍.各種獎品的單價如下表所示.如果計劃一等獎買x件,買50件獎品的總錢數(shù)是w元.
  一等獎 二等獎 三等獎
單元(元) 12 10 5
(1)求w與x的函數(shù)關系式及自變量x的取值范圍;
(2)請你計算一下,如果購買這三種獎品所花的總錢數(shù)最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:
(1)-20+(-18)-12+10;
(2)(-
3
4
)+(-
1
4
)-3

(3)(
3
4
-
1
6
-
1
12
)×(-48)
;
(4)-2.5×17×(-4)×(-0.1);
(5)  33.1-10.7-(-22.9)-|-
23
10
|

(6)  (-36)÷4-5×(-1.2);
(7)4
1
2
×[-32×(-
1
3
)
2
+0.8]÷(-
3
5
)

(8)-22-|-6|+2-3×(-
1
3
)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關系:
日銷售單價x(元) 3 4 5 6
日銷售量y(個) 20 15 12 10
(1)猜測并確定y與x之間的函數(shù)關系式;
(2)設經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關系式.若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當日銷售單價x定為多少時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、某企業(yè)在生產(chǎn)過程中產(chǎn)生大量的污水,為了保護環(huán)境,該企業(yè)決定購買10臺污水處理設備.現(xiàn)有A,B兩種型號的設備,其中每臺的價格、月處理污水量如下表:
A型 B型
價格(萬元/臺) 12 10
處理污水量(噸/月) 240 200
經(jīng)預算,該企業(yè)購買污水處理設備的資金不多于107萬元,設購買A型設備x臺(x≥1).
(1)請你為該企業(yè)設計出所有的購買方案;
(2)若該企業(yè)每月產(chǎn)生的污水量為2060噸,為了能夠及時處理掉每月所產(chǎn)生的污水量,同時也盡可能減少購買設備的資金,應選擇哪種購買方案?為什么?

查看答案和解析>>

同步練習冊答案