【題目】如圖,已知RtABC中,∠ACB=90°AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過(guò)點(diǎn)AP是弧AB上的一個(gè)動(dòng)點(diǎn).

(1)求半徑OB的長(zhǎng);

(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延長(zhǎng)BP、CA交于點(diǎn)D,求線段DP的長(zhǎng).

【答案】(1)OB=9;(2)PCB的正切值=(3)PD=

【解析】

(1)根據(jù)勾股定理得到AB==12,如圖1,過(guò)OOHABH,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(2)如圖2,連接OPABH,根據(jù)垂徑定理得到OPAB,AH=BH=AB=6,根據(jù)勾股定理得到OH=3,過(guò)PPMOBM,證明△OBH≌△OPM ,得到 根據(jù)三角函數(shù)的定義即可得到結(jié)論;

(3)如圖3,過(guò)AAEBDE,連接CP,根據(jù)角平分線的性質(zhì)得到AE=AC=4,根據(jù)相似三角形的性質(zhì)得到AD=,根據(jù)全等三角形的性質(zhì)得到BE=BC=16,根據(jù)勾股定理和三角形的面積公式即可得到結(jié)論.

解:(1)RtABC中,∠ACB=90°,AC=,BC=16,

AB==12,

如圖1,過(guò)OOHABH,

BH=AB=6

∵∠BHO=ACB=90°,∠B=B

∴△BHO∽△BCA,

,

=,

OB=9;

(2)如圖2,連接OPABH,

∵點(diǎn)P是弧AB的中點(diǎn),

OPAB,AH=BH=AB=6

RtBHO中,OH===3,

過(guò)PPMOBM,

在△OBH與△OPM中,

∴△OBH≌△△OPM (AAS),

∴∠PCB的正切值

(3)如圖3,過(guò)AAEBDE,連接CP,

BA平分∠PBC,ACBC

AE=AC=4,

∵∠AED=ACB=90°,∠D=D,

∴△ADE∽△BDC,

=,

設(shè)DE=x,

=,

AD=,

RtACBRtAEB中, ,

RtACBRtAEB(HL),

BE=BC=16,

CD2+BC2=BD2

(4+)2+162=(16+x)2,

解得:x=

AD=,BD=16+=

CD=,

BC是⊙的直徑,

CPBD,

CP===,

PD==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,A0,4),B80),C84).

1)試說(shuō)明四邊形AOBC是矩形.

2)在x軸上取一點(diǎn)D,將△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△D'CB'(點(diǎn)D'與點(diǎn)D對(duì)應(yīng)).

①若OD3,求點(diǎn)D'的坐標(biāo).

②連接AD'、OD',則AD'+OD'是否存在最小值,若存在,請(qǐng)直接寫出最小值及此時(shí)點(diǎn)D'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角板如圖所示,疊放在一起.若固定△AOB,將△ACD繞著公共點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)α(0α180).請(qǐng)你探索,當(dāng)△ACD的一邊與△AOB的一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角α的度數(shù)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知公路lA、B兩點(diǎn)之間的距離為50m,小明要測(cè)量點(diǎn)C與河對(duì)岸邊公路l的距離,測(cè)得∠ACB=∠CAB30°.點(diǎn)C到公路l的距離為(  )

A. 25m B. m C. 25m D. 25+25m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)傳統(tǒng)文化進(jìn)校園活動(dòng),某校準(zhǔn)備成立經(jīng)典誦讀、傳統(tǒng)禮儀、民族器樂(lè)地方戲曲等四個(gè)課外活動(dòng)小組.學(xué)生報(bào)名情況如圖(每人只能選擇一個(gè)小組):

1)報(bào)名參加課外活動(dòng)小組的學(xué)生共有 人,將條形圖補(bǔ)充完整;

2)扇形圖中m= ,n= ;

3)根據(jù)報(bào)名情況,學(xué)校決定從報(bào)名經(jīng)典誦讀小組的甲、乙、丙、丁四人中隨機(jī)安排兩人到地方戲曲小組,甲、乙恰好都被安排到地方戲曲小組的概率是多少?請(qǐng)用列表或畫樹(shù)狀圖的方法說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=AC,AC交⊙O于點(diǎn)E,BC交⊙O于點(diǎn)D,FCE的中點(diǎn),連接DF.則下列結(jié)論錯(cuò)誤的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,AB3,BC5,∠BAC90°,EF分別是AB,BC上的動(dòng)點(diǎn),EFBC,BEFPEF關(guān)于直線EF對(duì)稱,若APD是直角三角形,則BF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC,BC為邊向外作正方形ACDEBCFG,DE,FG, 的中點(diǎn)分別是M,N,PQ.若MP+NQ14,AC+BC20,則AB的長(zhǎng)是( 。

A. 9B. C. 13D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案