如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

B

解析分析:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(diǎn)(0,1)和(﹣1,0),∴c=1,a﹣b+c=0。
①∵拋物線的對稱軸在y軸右側(cè),∴x>0!郺與b異號(hào)!郺b<0,正確。
②∵拋物線與x軸有兩個(gè)不同的交點(diǎn),∴b2﹣4ac>0。
∵c=1,∴b2﹣4a>0,即b2>4a。正確。
④∵拋物線開口向下,∴a<0。
∵ab<0,∴b>0。
∵a﹣b+c=0,c=1,∴a=b﹣1。∴b﹣1<0,即b<1!0<b<1,正確。
③∵a﹣b+c=0,∴a+c=b!郺+b+c=2b>0。
∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2!0<a+b+c<2,正確。
⑤拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為(﹣1,0),設(shè)另一個(gè)交點(diǎn)為(x0,0),則x0>0,
由圖可知,當(dāng)﹣1<x<x0時(shí),y>0;當(dāng)x>x0時(shí),y<0。
∴當(dāng)x>﹣1時(shí),y>0的結(jié)論錯(cuò)誤。
綜上所述,正確的結(jié)論有①②③④。故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是(    ).

A.(2,-3) B.(-2,3) C.(2,3) D.(-2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)y=x2+2x﹣3,當(dāng)x=m時(shí),y<0,則m的值可能是

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

拋物線y=ax2+bx+c(a<0)如圖所示,則關(guān)于x的不等式ax2+bx+c>0的解集是

A.x<2 B.x>﹣3 C.﹣3<x<1 D.x<﹣3或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

拋物線y = -(x+1)2+3的頂點(diǎn)坐標(biāo)(   )

A.(1,3) B.(1,-3) C.(-1,3) D.(-1,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,一段拋物線y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點(diǎn)為O、A1,頂點(diǎn)為P1;將m1繞點(diǎn)A1旋轉(zhuǎn)180°得m2,交x軸于點(diǎn)A2,頂點(diǎn)為P2;將m2繞點(diǎn)A2旋轉(zhuǎn)180°得m3,交x軸于點(diǎn)A3,頂點(diǎn)為P3,…,如此進(jìn)行下去,直至得m10,頂點(diǎn)為P10,則P10的坐標(biāo)為(     ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知兩點(diǎn)均在拋物線上,點(diǎn)是該拋物線的頂點(diǎn),若,則的取值范圍是【   】

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

(2013年浙江義烏3分)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:
①當(dāng)x>3時(shí),y<0;②3a+b>0;③;④3≤n≤4中,
正確的是【   】

A.①② B.③④ C.①④ D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

點(diǎn)A(2,y1)、B(3,y2)是二次函數(shù)y=x2-2x+1的圖象上兩點(diǎn),則y1與y2的大小關(guān)系為y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

同步練習(xí)冊答案