25、已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按圖1放置,使點(diǎn)E在BC上,取DF的中點(diǎn)G,連接EG,CG.
(1)延長(zhǎng)EG交DC于H,試說(shuō)明:DH=BE.
(2)將圖1中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,連接DF,取DF中點(diǎn)G(如圖2),莎莎同學(xué)發(fā)現(xiàn):EG=CG且EG⊥CG.在設(shè)法證明時(shí)他發(fā)現(xiàn):若連接BD,則D,E,B三點(diǎn)共線.你能寫(xiě)出結(jié)論“EG=CG且EG⊥CG”的完整理由嗎?請(qǐng)寫(xiě)出來(lái).
(3)將圖1中△BEF繞B點(diǎn)轉(zhuǎn)動(dòng)任意角度α(0<α<90°),再連接DF,取DF的中點(diǎn)G(如圖3),第2問(wèn)中的結(jié)論是否成立?若成立,試說(shuō)明你的結(jié)論;若不成立,也請(qǐng)說(shuō)明理由.
分析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易證得△GEF≌△GHD,得EF=DH,而B(niǎo)E=EF,即可得到結(jié)論.
(2)連接DB,如圖2,由△BEF為等腰直角三角形,得∠EBF=45°,而四邊形ABCD為正方形,得∠DBC=45°,得到D,E,B三點(diǎn)共線,而G為DF的中點(diǎn),根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到結(jié)論.
(3)連接AC、BD相交于點(diǎn)O,取BF的中點(diǎn)M,連接OG、EM、MG,由G為DF的中點(diǎn),O為BD的中點(diǎn),M為BF的中點(diǎn),根據(jù)三角形中位線的性質(zhì)得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF=90°,得∠EMG=∠GOC,則△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.
解答:(1)證明:∵∠BEF=90°,
∴EF∥DH,
∴∠EFG=∠GDH,
而∠EGF=∠DGH,GF=GD,
∴△GEF≌△GHD,
∴EF=DH,
而B(niǎo)E=EF,
∴DH=BE;

(2)連接DB,如圖2,
∵△BEF為等腰直角三角形,
∴∠EBF=45°,
而四邊形ABCD為正方形,
∴∠DBC=45°,
∴D,E,B三點(diǎn)共線.
而∠BEF=90°,
∴△FED為直角三角形,
而G為DF的中點(diǎn),
∴EG=GD=GC,
∴∠EGC=2∠EDC=90°,
∴EG=CG且EG⊥CG;


(3)第2問(wèn)中的結(jié)論成立.理由如下:
連接AC、BD相交于點(diǎn)O,取BF的中點(diǎn)M,連接OG、EM、MG,如圖,

∵G為DF的中點(diǎn),O為BD的中點(diǎn),M為BF的中點(diǎn),
∴OG∥BF,GM∥OB,
∴四邊形OGMB為平行四邊形,
∴OG=BM,GM=OB,
而EM=BM,OC=OB,
∴EM=OG,MG=OC,
∵∠DOG=∠GMF,
而∠DOC=∠EMF=90°,
∴∠EMG=∠GOC,
∴△MEG≌△OGC,
∴EG=CG,∠EGM=∠OCG,
又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,
∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,
∴EG=CG且EG⊥CG.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段所夾的角等于旋轉(zhuǎn)角.也考查了三角形全等的判定與性質(zhì)、三角形中位線的性質(zhì)、直角三角形斜邊上的中線性質(zhì)以及正方形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
(1)發(fā)現(xiàn)與證明:
發(fā)現(xiàn):①當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí)(如圖1),△ABE與△ADG的面積關(guān)系是:
 

②當(dāng)E點(diǎn)旋轉(zhuǎn)到CB的延長(zhǎng)線上時(shí)(如圖2),△ABE與△ADG的面積關(guān)系是:
 

證明:請(qǐng)你選擇上述兩個(gè)發(fā)現(xiàn)中的任意一個(gè)加以證明,選擇①、②證明的滿分分別為4分和6分.(注意:證明前要注明選擇了哪一個(gè)發(fā)現(xiàn))
(2)引申與運(yùn)用:
引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí)(如圖3),△ABE與△ADG的面積關(guān)系是:
 

運(yùn)用:已知△ABC,AB=5cm,BC=3cm,分別以AB、BC、CA為邊向外作正方形(如圖4),則圖中陰影部分的面積和的最大值是
 
cm2
證明:我選擇
 
進(jìn)行證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上.
(1)如圖1,連接DF、BF,證明:BF=DF;
(2)若將正方形AEFG繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),在旋轉(zhuǎn)的過(guò)程中線段DF與BF的長(zhǎng)還相等嗎?若相等,請(qǐng)證明;若相不等,連接DG,在旋轉(zhuǎn)的過(guò)程中,你能否找到一條線段的長(zhǎng)與線段DG的長(zhǎng)始終相等.并以圖2為例說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
精英家教網(wǎng)
(1)發(fā)現(xiàn):當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí)(如圖1),△ABE與△ADG的面積關(guān)系是:
 

(2)引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí)(如圖2),△ABE與△ADG的面積關(guān)系是:
 
.并證明你的結(jié)論.
(3)運(yùn)用:已知△ABC,AB=5cm,BC=3cm,分別以AB、BC、CA為邊向外作正方形(如圖3),則圖中陰影部分的面積和的最大值是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD和EFCG,點(diǎn)E、F、G分別在線段AC、BC、CD上,正方形ABCD的邊長(zhǎng)為6.
(1)如果正方形EFCG的邊長(zhǎng)為4,求證:△ABE∽△CAG;
(2)正方形EFCG的邊長(zhǎng)為多少時(shí),tan∠ABE×cot∠CAG=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).

(1)如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí),△ABE與△ADG面積之間的關(guān)系為:S△ABE
=
=
S△ADG(填“<”“=”“>”);
(2)如圖,當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí),S△ABE
=
=
S△ADG(填“<”“=”“>”),并說(shuō)明理由;
(3)如圖,四邊形ABCD、四邊形AEFG和四邊形DGMN均為正方形,則S△ABE、S△ADG、S△CDN和S△GMF的關(guān)系是
相等
相等

(4)某小區(qū)中有一塊空地,要在其中建三個(gè)正方形健身場(chǎng)所,其余空地(圖中陰影部分)修成草坪,其中一個(gè)正方形的邊長(zhǎng)為6m.另外兩個(gè)正方形的邊長(zhǎng)之和為10m,則草坪的最大面積為
48
48
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案