【題目】如圖,四邊形ABCD與四邊形CEFG是兩個正方形,邊長分別為a、b.其中B、C、E在一條直線上,G在線段CD上.三角形AGE的面積為S.

(1)①當a=5,b=3時,求S的值;
②當a=7,b=3時,求S的值;
(2)從以上結(jié)果中,請你猜想S與a、b中的哪個量有關(guān)?用字母a,b表示S,并對你的猜想進行證明.

【答案】
(1)

解:①∵四邊形ABCD與四邊形CEFG是兩個正方形,AB=5,EC=3,

∴DG=CD﹣CG=5﹣3=2,

∴SAEG=S正方形ABCD+S正方形ECGF﹣SABE﹣SADG﹣SEFG

=25+9﹣ ×8×5﹣ ×5×2﹣ ×3×3=4.5,

②)①∵四邊形ABCD與四邊形CEFG是兩個正方形,AB=7,EC=3,

∴DG=CD﹣CG=7﹣3=4,

∴SAEG=S正方形ABCD+S正方形ECGF﹣SABE﹣SADG﹣SEFG

=49+9﹣ ×10×7﹣ ×7×4﹣ ×3×3=4.5


(2)

解:結(jié)論S= b2

證明:∵SAEG=S正方形ABCD+S正方形ECGF﹣SABE﹣SADG﹣SEFG

=a2+b2 (a+b)a﹣ a(a﹣b)﹣ b2

=a2+b2 a2 ab﹣ a2+ ab﹣ b2

= b2

∴S= b2


【解析】(1)①根據(jù)SAEG=S正方形ABCD+S正方形ECGF﹣SABE﹣SADG﹣SEFG即可解決問題.
②方法同上.(2)結(jié)論S= b2 . 根據(jù)SAEG=S正方形ABCD+S正方形ECGF﹣SABE﹣SADG﹣SEFG即可證明.
【考點精析】關(guān)于本題考查的平行四邊形的性質(zhì),需要了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】挑戰(zhàn)自我!
下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用根火柴棒,
擺第②個圖案用根火柴棒,
擺第③個圖案用根火柴棒.
(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?
(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AD,BC是O的兩條互相垂直的直徑,點P從點O出發(fā)沿圖中某一個扇形順時針勻速運動,設(shè)APB=y(單位:度),如果y與點P運動的時間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點P的運動路線可能為(

A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南寧市青秀區(qū)新開發(fā)某工程準備招標,指揮部現(xiàn)接到甲、乙兩個工程隊的投標書,從投標書中得知:乙隊單獨完成這項工程所需天數(shù)是甲隊單獨完成這項工程所需天數(shù)的2倍;該工程若由甲隊先做6天,剩下的工程再由甲、乙兩隊合作16天可以完成.

(1)求甲、乙兩隊單獨完成這項工程各需要多少天?

(2)已知甲隊每天的施工費用為0.67萬元,乙隊每天的施工費用為0.33萬元,該工程預算的施工費用為19萬元.為縮短工期,擬安排甲、乙兩隊同時開工合作完成這項工程,問:該工程預算的施工費用是否夠用?若不夠用,需要追加預算多少萬元?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)請你任意寫出五個正的真分數(shù):_____、_____、__________、_____.請給每個分數(shù)的分子和分母同加上一個正數(shù)得到五個新分數(shù):_____、_____、_____、_____、_____

(2)比較原來每個分數(shù)與對應(yīng)新分數(shù)的大小,可以得出下面的結(jié)論:一個真分數(shù)是(a、b均為正數(shù),a<b)給其分子、分母同加上一個正數(shù)m,得,則兩個分數(shù)的大小關(guān)系是: _____

(3)請你用文字敘述(2)中結(jié)論的含義:_______________________________________

(4)你能用圖形的面積說明這個結(jié)論嗎?

(5)解決問題:如圖所示,有一個長寬不等的長方形綠地,現(xiàn)給綠地四周鋪一條寬相等的小路,原來的綠地與現(xiàn)在鋪過小路后的綠地的長與寬的比值是否相等?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問題.

(1)請補全以下求不等式﹣2x2﹣4x0的解集的過程.

①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).

②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標示出函數(shù)y=﹣2x2﹣4x圖象中y0的部分.

③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x0的解集為﹣2x0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+14的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨自挺立的紀念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,定義點P(x,y)的變換點為P′(x+y,x﹣y).

(1)如圖1,如果O的半徑為

①請你判斷M(2,0),N(﹣2,﹣1)兩個點的變換點與O的位置關(guān)系;

②若點P在直線y=x+2上,點P的變換點P′在O的內(nèi),求點P橫坐標的取值范圍.

(2)如圖2,如果O的半徑為1,且P的變換點P′在直線y=﹣2x+6上,求點P與O上任意一點距離的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(3分)有13位同學參加學校組織的才藝表演比賽.已知他們所得的分數(shù)互不相同,共設(shè)7個獲獎名額.某同學知道自己的比賽分數(shù)后,要判斷自己能否獲獎,在下列13名同學成績的統(tǒng)計量中只需知道一個量,它是( 。

A. 眾數(shù) B. 方差 C. 中位數(shù) D. 平均數(shù)

查看答案和解析>>

同步練習冊答案