【題目】正方形ABCD中,E、F分別在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一點(diǎn),且∠BGD=120°,連接EF、BG、FG、EF、BG交于點(diǎn)H,則下面結(jié)論:①DE=DF;②△BEF是等邊三角形;③∠BGF=45°;④BG=EG+FG中,正確的是(請?zhí)罘枺?
【答案】①②④
【解析】證明:連接BD,在BG上取一點(diǎn)M,使得GM=GF. ∵四邊形ABCD是正方形,
∴AB=CB=AD=CD,∠ABC=∠A=∠C=90°,∠ABD=∠CBD=45°,
在△BAE和△BCF中,
,
∴△BAE≌△BCF,
∴BE=BF,AE=CF,
∴DE=DF,故①正確,
∵∠ABE=∠CBF=15°,
∠EBF=60°,
∴△EBF是等邊三角形,故②正確,
∵∠BGD=120°,
∴∠EGH=∠HFB=60°,
∵∠EHG=∠BHF,
∴△EHG∽△BHF,
∴ = ,
∴ = ,∵∠EHB=∠GHF,
∴△EHB∽△GHF,
∴∠BEH=∠BGF=60°,故③錯(cuò)誤,
∵GM=GF,
∴△GMF是等邊三角形,
∴FM=FG,∠MFG=∠BFE=60°,
∴∠BFM=∠EFG,∵BF=FE,
∴△BFM≌△EFG,
∴BM=EG,
∴GB=GM+BM=GF+EG,故④正確.
所以答案是①②④.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宇宙現(xiàn)在的年齡約為200億年,200億用科學(xué)記數(shù)法表示為( 。
A.0.2×1011
B.2×1010
C.200×108
D.2×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,點(diǎn)D的坐標(biāo)為(-1,0),點(diǎn)A的橫坐標(biāo)是1,tan∠CDO=2,過點(diǎn)B作BH⊥y軸于點(diǎn)H,連接 AH.
(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求△ABH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-3,0)、B(4,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D在x軸的負(fù)半軸上,且BD=BC,有一動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以每秒1個(gè)單位長度的速度向點(diǎn)B移動,同時(shí)另一個(gè)動點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA以某一速度向點(diǎn)A移動.
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動,線段PQ被CD垂直平分,求此時(shí)t的值;
(3)該拋物線的對稱軸上是否存在一點(diǎn)M,使MQ+MA的值最小?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】便利店售貨員小海把“收入100元”記作+100元,那么“-60元”表示( )
A.支出40元B.支出60元C.收人40元D.收入60元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,△ABC中,∠BAC=90°,AB=AC,分別過點(diǎn)B、C作經(jīng)過點(diǎn)A的直線L的垂線段BD、CE,垂足分別D、E.
(1)求證:DE=BD+CE.
(2)如果過點(diǎn)A的直線經(jīng)過∠BAC的內(nèi)部,那么上述結(jié)論還成立嗎?請給出你的結(jié)論,并畫出圖形予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,點(diǎn)E是邊長為1的正方形ABCD的邊AB上任意一點(diǎn)(不含A、B),過B、C、E三點(diǎn)的圓與BD相交于點(diǎn)F,與CD相交于點(diǎn)G,與∠ABC的外角平分線相交于點(diǎn)H.
(1)求證:四邊形EFCH是正方形;
(2)設(shè)BE=x,△CFG的面積為y,求y與x的函數(shù)關(guān)系式,并求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,CD為高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB邊上的中線對嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com