精英家教網(wǎng)如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),△ADE經(jīng)逆時(shí)針旋轉(zhuǎn)后與△CDF重合.
(1)指出旋轉(zhuǎn)的中心和旋轉(zhuǎn)的角度;
(2)如果連接EF,那么△DEF是怎樣的三角形?請說明理由.
(3)現(xiàn)把△CDF向左平移,使DC與AB重合,得△BAH,AH交ED于點(diǎn)G.
①請問平移的距離是多少?此時(shí)△BAH能否由△ADE直接旋轉(zhuǎn)得到,若能,請說出怎樣旋轉(zhuǎn)(指出旋轉(zhuǎn)的中心和旋轉(zhuǎn)的角度);若不能,請說明理由.
②線段AH與ED有怎樣的位置關(guān)系?試說明理由,并求AG的長(精確到0.1).
分析:(1)四邊形ABCD為正方形,△ADE經(jīng)逆時(shí)針旋轉(zhuǎn)后與△CDF重合,可知旋轉(zhuǎn)中心,旋轉(zhuǎn)角;
(2)由旋轉(zhuǎn)的性質(zhì)可知,DE=DF,∠EDF為旋轉(zhuǎn)角,可判斷△DEF為等腰直角三角形;
(3)①能,旋轉(zhuǎn)中心為正方形對角線的交點(diǎn),逆時(shí)針旋轉(zhuǎn)90°;
②由旋轉(zhuǎn)角為90°可知,線段AH與ED的位置關(guān)系為垂直;在△ADE中,利用面積法求AG.
解答:解:(1)∵四邊形ABCD為正方形,△ADE經(jīng)逆時(shí)針旋轉(zhuǎn)后與△CDF重合,
∴旋轉(zhuǎn)角∠ADC=90°,旋轉(zhuǎn)中心為點(diǎn)D.

(2)△DEF為等腰直角三角形;
理由:由旋轉(zhuǎn)的性質(zhì)可知,DE=DF,
旋轉(zhuǎn)角∠EDF=∠ADC=90°
∴△DEF為等腰直角三角形;

(3)①平移距離為2.
此時(shí)△BAH能由△ADE直接旋轉(zhuǎn)得到;旋轉(zhuǎn)中心為正方形對角線的交點(diǎn),逆時(shí)針旋轉(zhuǎn)90°即可;
②AH⊥ED;
理由:∵∠BAH=∠ADE,∠BAH+∠HAD=90°,
∴∠ADE+∠HAD=90°,
∴AH⊥ED;
∵AD=2,AE=1,
由勾股定理,得DE=
AD2+AE2
=
5

由S△ADE=
1
2
×AD×AE=
1
2
×AG×DE,得
AG=
AD×AE
DE
=
2×1
5
≈0.9.
點(diǎn)評:本題考查了平移、旋轉(zhuǎn)的基本性質(zhì),特殊三角形的判定,勾股定理及面積法的運(yùn)用能力,具有一定的綜合性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說明OE=OF;
(2)當(dāng)AE=AB時(shí),過點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習(xí)冊答案