【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點(diǎn)B,D,CD交BA的延長(zhǎng)線于點(diǎn)E,CO的延長(zhǎng)線交⊙O于點(diǎn)G,EF⊥OG于點(diǎn)F.
(1)求證:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的長(zhǎng).
【答案】
(1)證明:∵CB,CD分別切⊙O于點(diǎn)B,D,
∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,
∴∠BCO+∠COB=90°,
∵EF⊥OG,
∴∠FEB+∠FOE=90°,
而∠COB=∠FOE,
∴∠FEB=∠ECF;
(2)解:連接OD,如圖,
∵CB,CD分別切⊙O于點(diǎn)B,D,
∴CD=CB=6,OD⊥CE,
∴CE=CD+DE=6+4=10,
在Rt△BCE中,BE= =8,
設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,
在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,
∴OE=8﹣3=5,
在Rt△OBC中,OC= =3 ,
∵∠COB=∠FOE,
∴△OEF∽△OCB,
∴ = ,即 = ,
∴EF=2 .
【解析】(1)利用切線長(zhǎng)定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切線的性質(zhì)得OB⊥BC,則∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)連接OD,如圖,利用切線長(zhǎng)定理和切線的性質(zhì)得到CD=CB=6,OD⊥CE,則CE=10,利用勾股定理可計(jì)算出BE=8,設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,在Rt△ODE中,根據(jù)勾股定理得r2+42=(8﹣r)2 , 解得r=3,所以O(shè)E=5,OC=3 ,然后證明△OEF∽△OCB,利用相似比可計(jì)算出EF的長(zhǎng).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象如圖所示,
(1)求出這個(gè)函數(shù)關(guān)系式.
(2)圖象上有一點(diǎn)P(4,m),求m的值.
(3)判斷點(diǎn)(﹣4,3)和 (6,﹣6)是否在此直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB﹦AC,BD、CE分別是所在角的平分線,AN⊥BD于N點(diǎn),AM⊥CE于M點(diǎn)。求證:AM﹦AN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知EF∥GH,A、D為GH上的兩點(diǎn),M、B為EF上的兩點(diǎn),延長(zhǎng)AM于點(diǎn)C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的內(nèi)接正多邊形的一邊,已知∠OAB=70°,則這個(gè)正多邊形的內(nèi)角和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合內(nèi):
﹣2.5,0,8,﹣2,,, ﹣0.5252252225…(每?jī)蓚(gè)5之間依次增加1個(gè)2).
(1)正數(shù)集合:{ …};
(2)負(fù)數(shù)集合:{ …};
(3)整數(shù)集合:{ …};
(4)無(wú)理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),D是線段AB的五等分點(diǎn),若CD=6cm.
(1)求線段AB的長(zhǎng);
(2)若AE=DE,求線段EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某重點(diǎn)中學(xué)校團(tuán)委、學(xué)生會(huì)發(fā)出倡議,在初中各年級(jí)捐款購(gòu)買書籍送給我市貧困地區(qū)的學(xué)校.初一年級(jí)利用捐款買甲、乙兩種自然科學(xué)書籍若干本,用去5324元;初二年級(jí)買了A、B兩種文學(xué)書籍若干本,用去4840元,其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價(jià)相同,乙種書與A種書的單價(jià)相同.若甲、乙兩種書的單價(jià)之和為121元,則初一和初二兩個(gè)年級(jí)共向貧困地區(qū)的學(xué)校捐獻(xiàn)了________本書.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司到果園基地購(gòu)買某種優(yōu)質(zhì)水果,慰問(wèn)醫(yī)務(wù)工作者,果園基地對(duì)購(gòu)買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.
(1)分別寫出該公司兩種購(gòu)買方案的付款y(元)與所購(gòu)買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購(gòu)買量判斷,選擇哪種購(gòu)買方案付款最少?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com