如圖所示,已知矩形ABCD,R、P分別是DC、BC上的點(diǎn),E、F分別是AP、RP的中點(diǎn),當(dāng)P在BC上從B向C移動(dòng)而R不動(dòng)時(shí),那么下列結(jié)論成立的是

[  ]
A.

線段EF的長(zhǎng)逐漸增大

B.

線段EF的長(zhǎng)逐漸減少

C.

線段EF的長(zhǎng)不變

D.

線段EF的長(zhǎng)不能確定

答案:C
解析:

  分析:考慮到線段EF的兩個(gè)端點(diǎn)都是兩條線段AP、PR的中點(diǎn),于是聯(lián)想到EF可能是某一個(gè)三角形的中位線,然后運(yùn)用中位線的性質(zhì)解決問題.

  解:連接AR.

  因?yàn)镋、F分別是AP、RP的中點(diǎn),所以EF是△PRA的中位線.

  所以EF=AR.

  又因?yàn)辄c(diǎn)R是DC上的一個(gè)不動(dòng)點(diǎn),

  所以AR是一個(gè)不變的量.

  所以EF=AR也是一個(gè)固定的量,

  即線段EF的長(zhǎng)不變.

  所以本題應(yīng)選C.

  點(diǎn)評(píng):當(dāng)題目中有某些線段的中點(diǎn)時(shí),首先應(yīng)考慮運(yùn)用三角形的中位線解題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD中,CD=2,AD=3,點(diǎn)P是AD上的一個(gè)動(dòng)點(diǎn)(與A、D不重合),過點(diǎn)P作PE⊥CP交直線AB于點(diǎn)E,設(shè)PD=x,AE=y,
(1)寫出y與x的函數(shù)解析式,并指出自變量的取值范圍;
(2)如果△PCD的面積是△AEP面積的4倍,求CE的長(zhǎng);
(3)是否存在點(diǎn)P,使△APE沿PE翻折后,點(diǎn)A落在BC上?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知矩形ABCD(AD>AB)中,AB=a,∠BDA=θ,試用a與θ表示:AD=
 
,BD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某住宅小區(qū)的物業(yè)管理部門為解決住戶停車?yán)щy,將一條道路辟為停車場(chǎng),停車位置如圖所示.已知矩形ABCD是供一輛機(jī)動(dòng)車停放的車位,其中AB=5.4米,BC=2.2米,∠DCF=40°.請(qǐng)計(jì)算停車位所占道路的寬度EF(結(jié)果精確到0.1米).
參考數(shù)據(jù):sin40°≈0.64   cos40°≈0.77   tan40°≈0.84.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD的邊AB=3cm,AD=4cm.
(1)以點(diǎn)A為圓心,4cm為半徑作⊙A,則點(diǎn)B,C,D與⊙A的位置關(guān)系如何?
(2)若以點(diǎn)A為圓心作⊙A,使B,C,D三點(diǎn)中至少有一個(gè)點(diǎn)在圓內(nèi),且至少有一點(diǎn)在圓外,則⊙A的半徑r的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD中兩條對(duì)角線AC、BD相交于點(diǎn)O,∠ADB=30°,DF∥AC交BC的延長(zhǎng)線于F點(diǎn),
(1)判定△AOB的形狀,并說明理由.
(3)求證:BC=CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案