如圖,蜂巢的橫截面由正六邊形組成,且能無(wú)限無(wú)縫隙拼接,稱(chēng)橫截面圖形由全等正多邊形組成,且能無(wú)限無(wú)縫隙拼接的多邊形具有同形結(jié)構(gòu).
若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿(mǎn)足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是    (寫(xiě)出n的取值范圍)
【答案】分析:先根據(jù)n邊形的內(nèi)角和為(n-2)•180°及正n邊形的每個(gè)內(nèi)角相等,得出α=,再代入360=kα,即可求出k關(guān)于邊數(shù)n的函數(shù)關(guān)系式,然后根據(jù)k為正整數(shù)求出n的取值范圍.
解答:解:∵n邊形的內(nèi)角和為(n-2)•180°,
∴正n邊形的每個(gè)內(nèi)角度數(shù)α=,
∵360=kα,
∴k•=360,
∴k=
∵k===2+,k為正整數(shù),
∴n-2=1,2,±4,
∴n=3,4,6,-2,
又∵n≥3,
∴n=3,4,6.
即k=(n=3,4,6).
故答案為k=(n=3,4,6).
點(diǎn)評(píng):本題考查了n邊形的內(nèi)角和公式,正n邊形的性質(zhì)及分式的變形,根據(jù)正n邊形的性質(zhì)求出k關(guān)于邊數(shù)n的函數(shù)關(guān)系式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•齊齊哈爾)如圖,蜂巢的橫截面由正六邊形組成,且能無(wú)限無(wú)縫隙拼接,稱(chēng)橫截面圖形由全等正多邊形組成,且能無(wú)限無(wú)縫隙拼接的多邊形具有同形結(jié)構(gòu).
若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿(mǎn)足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
(寫(xiě)出n的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,蜂巢的橫截面由正六邊形組成,且能無(wú)限無(wú)縫隙拼接,稱(chēng)橫截面圖形由全等正多邊形組成,且能無(wú)限無(wú)縫隙拼接的多邊形具有同形結(jié)構(gòu).

若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿(mǎn)足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是    (寫(xiě)出n的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(黑龍江黑河、齊齊哈爾、大興安嶺卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,蜂巢的橫截面由正六邊形組成,且能無(wú)限無(wú)縫隙拼接,稱(chēng)橫截面圖形由全等正多邊形組成,且能無(wú)限無(wú)縫隙拼接的多邊形具有同形結(jié)構(gòu).

若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿(mǎn)足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是    (寫(xiě)出n的取值范圍)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,蜂巢的橫截面由正六邊形組成,且能無(wú)限無(wú)縫隙拼接,稱(chēng)橫截面圖形由全等正多邊形組成,且能無(wú)限無(wú)縫隙拼接的多邊形具有同形結(jié)構(gòu).
若已知具有同形結(jié)構(gòu)的正n邊形的每個(gè)內(nèi)角度數(shù)為α,滿(mǎn)足:360=kα(k為正整數(shù)),多邊形外角和為360°,則k關(guān)于邊數(shù)n的函數(shù)是________(寫(xiě)出n的取值范圍)

查看答案和解析>>

同步練習(xí)冊(cè)答案