(本小題滿分12分)如圖,的直徑是它的兩條切線,E,交AMD,交BNC.設(shè)

(1)求證:;
(2)求關(guān)于的關(guān)系式;
(3)求四邊形的面積S,并證明:
證明:(1)∵AB是直徑,AM、BN是切線,
,∴
解:(2)過點DF,則
由(1),∴四邊形為矩形.
,
DEDA,CECB都是切線,
∴根據(jù)切線長定理,得
,
中,
,
化簡,得
(3)由(1)、(2)得,四邊形的面積,

,當且僅當時,等號成立.
,即
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)如圖,在平面直角坐標系內(nèi),為原點,點的坐標為經(jīng)過兩點作半徑為軸的負半軸于點

(1)求點的坐標;
(2)過點作的切線交軸于點求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將置于平面直角坐標系中,
其中點為坐標原點,點的坐標為,

(1)求作的外接圓圓心P,并求出P點的坐標;
(2)若⊙P與軸交于點,求點的坐標;
(3)若CD是⊙P的切線,求直線CD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)連結(jié),
證明:;
(2)如圖,過點A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點P和點Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點A作半圓的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連結(jié)PA. 證明:PA是半圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,弦CD∥AB,若∠ABD=65°,則∠  ADC=____________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐,它的左視圖是一個正三角形,則這個圓錐的側(cè)面展開圖的圓心角度數(shù)是( 。
A. 60°B. 90°C. 120°D. 180°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

的內(nèi)接三角形,             
的內(nèi)接正方形的面積為(   )
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖, 已知⊙O.

(1)用尺規(guī)作正六邊形, 使得⊙O是這個正六邊形的外接圓, 并保留作圖痕跡;
(2)用兩種不同的方法把所做的正六邊形分割成六個全等的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

.如圖,⊙O中,弦、相交于點,若,,則等于(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案