【題目】如圖,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四邊形ABCD的面積.

【答案】36.

【解析】試題分析:連接AC,在直角三角形ABC中,由ABBC的長,利用勾股定理求出AC的長,再由ADCD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

試題解析:解:連接AC如圖所示:

∵∠B=90°,∴△ABC為直角三角形AB=3,BC=4,∴根據(jù)勾股定理得:AC==5.CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD為直角三角形,ACD=90°,則S四邊形ABCD=SABC+SACD=ABBC+ACCD=×3×4+×5×12=36.

故四邊形ABCD的面積是36.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】北京奧運會體育場的鳥巢鋼結(jié)構(gòu)工程施工建設中,首次使用了我國科研人員自主研制的強度為4.6×108帕的鋼材,那么它的原數(shù)是(

A.4600000B.46000000C.460000000D.4600000000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雅安地震發(fā)生后,全國人民抗震救災,眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運往災區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 來運送.

(2)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(3)為了節(jié)省運費,該地政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時的運費又是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時針方向),木板上點A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】文文和彬彬在證明有兩個角相等的三角形是等腰三角形這一命題時,畫出圖形,寫出已知,求證(如圖),她們對各自所作的輔助線描述如下:

文文過點ABC的中垂線AD,垂足為D”;

彬彬:ABC的角平分線AD”

數(shù)學老師看了兩位同學的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請你簡要說明文文的輔助線作法錯在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A.1的平方根是﹣1

B.4的平方根是2

C.如果一個數(shù)有平方根,那么這個數(shù)的平方根一定有兩個

D.任何一個非負數(shù)的立方根都是非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

發(fā)言次數(shù)n

A

0≤n<3

B

3≤n<6

C

6≤n<9

D

9≤n<12

E

12≤n<15

F

15≤n<18


(1)求出樣本容量,并補全直方圖;
(2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生.現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率.

查看答案和解析>>

同步練習冊答案