15、用反證法證明“一個(gè)三角形中至多有一個(gè)直角.”應(yīng)先假設(shè)
三角形的內(nèi)角中有兩個(gè)直角
分析:在反證法的步驟中,第一步是假設(shè)結(jié)論不成立,可據(jù)此進(jìn)行填空.
解答:解:根據(jù)反證法的步驟,則可假設(shè)為三角形中有兩個(gè)直角,
因?yàn)閮蓚(gè)直角為180°,再加上一個(gè)角一定大于180°,
與三角形內(nèi)角和為180°矛盾,
所以一個(gè)三角形中至多有一個(gè)直角,
故答案為:三角形的內(nèi)角中有兩個(gè)直角.
點(diǎn)評:此題考查的知識點(diǎn)是反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:
(1)假設(shè)結(jié)論不成立;
(2)從假設(shè)出發(fā)推出矛盾;
(3)假設(shè)不成立,則結(jié)論成立.
在假設(shè)結(jié)論不成立時(shí),要注意考慮結(jié)論的反面所有可能的情況,這里三角形中最多有一個(gè)是直角的反面是三角形中有兩個(gè)或三個(gè)為直角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、用反證法證明“三角形三個(gè)內(nèi)角中至少有兩個(gè)銳角”時(shí)應(yīng)首先假設(shè)
三角形三個(gè)內(nèi)角中最多有一個(gè)銳角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用反證法證明“三角形三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60°”.
已知:∠A,∠B,∠C是△ABC的內(nèi)角.求證:∠A,∠B,∠C中至少有一個(gè)內(nèi)角小于或等于60°.
證明:假設(shè)求證的結(jié)論不成立,那么
三角形中所有角都大于60°
三角形中所有角都大于60°

∴∠A+∠B+∠C>
180°
180°

這與三角形
的三內(nèi)角和為180°
的三內(nèi)角和為180°
相矛盾.
∴假設(shè)不成立
三角形三內(nèi)角中至少有一個(gè)內(nèi)角小于或等于60度
三角形三內(nèi)角中至少有一個(gè)內(nèi)角小于或等于60度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江建德李家鎮(zhèn)初級中學(xué)八年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

用反證法證明“三角形三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60º”。
已知:∠A,∠B,∠C是△ABC的內(nèi)角。
求證:∠A,∠B,∠C中至少有一個(gè)小于或等于60º。
證明:假設(shè)求證的結(jié)論不成立,即      
∴∠A+∠B+∠C>    
這與三角形    相矛盾。
∴假設(shè)不成立
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆浙江建德八年級下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

用反證法證明“三角形三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60º”。

已知:∠A,∠B,∠C是△ABC的內(nèi)角。

求證:∠A,∠B,∠C中至少有一個(gè)小于或等于60º。

證明:假設(shè)求證的結(jié)論不成立,即      

∴∠A+∠B+∠C>    

這與三角形    相矛盾。

∴假設(shè)不成立

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用反證法證明“三角形三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60°”.
已知:∠A,∠B,∠C是△ABC的內(nèi)角.求證:∠A,∠B,∠C中至少有一個(gè)內(nèi)角小于或等于60°.
證明:假設(shè)求證的結(jié)論不成立,那么______
∴∠A+∠B+∠C>______
這與三角形______相矛盾.
∴假設(shè)不成立
∴______.

查看答案和解析>>

同步練習(xí)冊答案