(2005•玉林)如圖,在△ABC中,AB=AC,BE平分∠ABC,DE∥BC.
求證:DE=EC.

【答案】分析:由DE∥BC,可知=,由AB=AC,可知DB=EC,由角平分線及平行線的性質(zhì)可知∠DEB=∠DBE.故DE=EC.
解答:證明:∵DE∥BC,
=.(1分)
又∵AB=AC,
∴DB=EC.(3分)
∵DE∥BC,
∴∠DEB=∠EBC.(4分)
而∵∠DBE=∠EBC,
∴∠DEB=∠DBE.(5分)
∴DB=DE.(6分)
∴DE=EC.(7分)
點評:本題主要考查等腰三角形的性質(zhì),綜合利用了平行線的性質(zhì)和角平分線的定義,是中學階段的基本題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負半軸相交于A、B兩點,與y軸的正半軸相交于C點,與雙曲線y=的一個交點是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,拋物線y=x2+bx+c與x軸的負半軸相交于A、B兩點,與y軸的正半軸相交于C點,與雙曲線y=的一個交點是(1,m),且OA=OC.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年廣西玉林市中考數(shù)學試卷(解析版) 題型:解答題

(2005•玉林)如圖,A、B兩點的坐標分別是(x1,0)、(x2,0),其中x1、x2是關(guān)于x的方程x2+2x+m-3=0的兩根,且x1<0<x2
(1)求m的取值范圍;
(2)設點C在y軸的正半軸上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述條件下,若點D在第二象限,△DAB≌△CBA,求出直線AD的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案