閱讀下面的文字,解答問題:
題目:已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(0,a),B(1,-2)兩點,求證:這個二次函數(shù)圖象的對稱軸是直線x=2.
題目中有一段被墨水污染了而無法辨認的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題目中二次函數(shù)的解析式?若能,寫出解題過程;若不能,請說明理由;
(2)請你根據(jù)已有信息,增加一個適當?shù)臈l件,把原題補充完整,所填條件是______.
【答案】分析:(1)利用待定系數(shù)法,將各點代入解析式,組成方程組求未知系數(shù);
(2)再添加一個條件,能求出解析式即可.
解答:解:(1)能求出二次函數(shù)的解析式.
把A(0,a),B(1,-2)分別代入解析式,并根據(jù)=2,組成方程組得:
,解得,解析式為y=x2-4x+1.

(2)求出函數(shù)y=x2-4x+1的頂點坐標為(2,-3),把頂點坐標加上即把題目補充完整,
故所填條件是經(jīng)過點C(2,-3).(答案不唯一)
點評:此題是一道條件開方性題目,解答此類題目不僅需要有扎實的基礎(chǔ)知識,更需要有嚴密的推理,對同學(xué)們要求較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的文字,解答問題:
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1
來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,所得的差就是小數(shù)部分.
又例如:因為
4
7
9
,即2<
7
<3
,
所以
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請解答:
(1) 如果
13
的整數(shù)部分為a,那么a=
 
.如果3+
3
=b+c
,其中b是整數(shù),且0<c<1,那么b=
 
,c=
 

(2) 將(1)中的a、b作為直角三角形的兩條直角邊,請你計算第三邊的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的文字,解答問題:
題目:已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(0,a),B(1,-2)兩點,求證:這個二次函數(shù)圖象的對稱軸是直線x=2.
題目中有一段被墨水污染了而無法辨認的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題目中二次函數(shù)的解析式?若能,寫出解題過程;若不能,請說明理由;
(2)請你根據(jù)已有信息,增加一個適當?shù)臈l件,把原題補充完整,所填條件是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的文字,解答問題:
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1
來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:∵
4
7
9
,即2<
7
<3
,
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請解答:(1)如果
5
的小數(shù)部分為a,
13
的整數(shù)部分為b,求a+b-
5
的值;
(2)已知:10+
3
=x+y
,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的文字,解答問題.
大家都知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:a表示
11
的整數(shù)部分,b表示
11
的小數(shù)部分.求2a+b-
11
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的文字,解答問題.
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,但是由于1<
2
<2,所以
2
的整數(shù)部分為1,將
2
減去其整數(shù)部分1,差就是小數(shù)部分
2
-1,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)
5
的整數(shù)部分是
2
2
,小數(shù)部分是
5
-2
5
-2
;
(2)1+
2
的整數(shù)部分是
2
2
,小數(shù)部分是
2
-1
2
-1

(3)若設(shè)2+
3
整數(shù)部分是x,小數(shù)部分是y,求x-
3
y的值.

查看答案和解析>>

同步練習(xí)冊答案