如圖,PA、PB是⊙O的切線,切點(diǎn)分別為A、B兩點(diǎn),點(diǎn)C在⊙O上運(yùn)動(dòng)(與A、B兩點(diǎn)不重合),如果∠P=46°,那么∠ACB的度數(shù)是______.
連接OA、OB.
∵PA、PB是⊙O的切線,切點(diǎn)分別為A、B,
∴∠OAP=∠OBP=90°(切線的性質(zhì)).
∵∠P=46°(已知),
∴∠AOB=180°-∠P=134°(四邊形的內(nèi)角和定理),
∴∠ACB=
1
2
∠AOB=72°(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半).
故答案是:72°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在半徑為5cm的⊙O中,直線l交⊙O于A、B兩點(diǎn),且弦AB=8cm,要使直線l與⊙O相切,則需要將直線l向下平移( 。
A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A是⊙O外一點(diǎn),B是⊙O上一點(diǎn),AO的延長(zhǎng)線交⊙O于點(diǎn)C,連接BC,∠C=22.5°,∠A=45度.求證:直線AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在以O(shè)為圓心的兩個(gè)圓中,大圓的半徑為5,小圓的半徑為3,則與小圓相切的大圓的弦長(zhǎng)為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(4,3),⊙A的半徑為2.過(guò)A作直線l平行于x軸,點(diǎn)P在直線l上運(yùn)動(dòng).當(dāng)點(diǎn)P的橫坐標(biāo)為12時(shí),直線OP與⊙A的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,經(jīng)過(guò)圓上點(diǎn)D的直線CD恰使∠ADC=∠B.
(1)求證:直線CD是⊙O的切線;
(2)過(guò)點(diǎn)A作直線AB的垂線交BD的延長(zhǎng)線于點(diǎn)E.且AB=
5
,BD=2.求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在射線OA上,開始時(shí),PO=6cm.如果⊙P以1cm/秒的速度沿由A向B的方向移動(dòng),那么當(dāng)⊙P的運(yùn)動(dòng)時(shí)間t(秒)滿足條件______時(shí),⊙P與直線CD相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,A、B為⊙O上兩點(diǎn),下列尋找弧AB的中點(diǎn)C的方法中正確的有( 。
作法一:連接OA、OB,作∠AOB的角平分線交弧AB于點(diǎn)C;
作法二:連接AB,作OH⊥AB于H,交弧AB于點(diǎn)C;
作法三:在優(yōu)弧AmB上取一點(diǎn)D,作∠ADB的平分線交弧AB于點(diǎn)C;
作法四:分別過(guò)A、B作⊙O的切線,兩切線交于點(diǎn)P,連接OP交弧AB于C.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知CA、CB都經(jīng)過(guò)點(diǎn)C,AC是⊙B的切線,⊙B交AB于點(diǎn)D,連接CD并延長(zhǎng)交OA于點(diǎn)E,連接AF.
(1)求證:AE⊥AB;
(2)求證:DE•DC=2AD•DB;
(3)如果AE=3,BD=4,求DC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案