如圖,二次函數(shù)y=ax2+bx(a>0)的圖象與反比例函數(shù)數(shù)學公式圖象相交于點A,B,已知點A的坐標為(1,4),點B在第三象限內,且△AOB的面積為3(O為坐標原點).
①求實數(shù)k的值;
②求二次函數(shù)y=ax2+bx(a>0)的解析式;
③設拋物線與x軸的另一個交點為D,E點為線段OD上的動點(與O,D不能重合),過E點作EF∥OB交BD于F,連接BE,設OE的長為m,△BEF的面積為S,求S于m的函數(shù)關系式;
④在③的基礎上,試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時E點的坐標;若不存在,說明理由.

解:①把A(1,4)代入得:k=xy=4,
答:實數(shù)k的值是4.

②過B作BM⊥x軸于M,BN⊥y軸于N,過A作AH⊥x軸于H,兩線BN和AH交于Q,
設OM=c,ON=d,c>0,d>o,
則:S=S△ABQ-S△AOH-S△BNO-S矩形ONQH,
即:3=(1+c)(4+d)-×1×4-cd-d×1,
cd=k=4,
解得:c=2,d=2,
∴B(-2,-2),
把A(1,4)和B(-2,-2)代入拋物線得:
解得:,
∴y=x2+3x,
答:二次函數(shù)y=ax2+bx(a>0)的解析式是y=x2+3x.
⑨把y=0代入y=x2+3x得:x2+3x=0,
解得:x1=0,x2=-3,
∴D(-3,0),
即OD=3,
∵B(-2,-2),
∴由勾股定理得:OB=2,
∵EF∥OB,
∴△DFE∽△DBO,
=,
=,
∴EF=2-m,
過F作FC⊥x軸于C,
根據(jù)相似三角形的對應高之比等于相似比得:=
=,
FC=

S=S△EDB-S△EDF
=DE×BM-FC×DE,
即S=-m2+m,
∴S與m的函數(shù)關系S=-m2+m.

④S=-m2+m.
當m=時,S最大,是,
,
答:在③的基礎上,S存在最大值,S的最大值是,此時E點的坐標是(-,0).
分析:①把A(1,4)代入即可;
②過B作BM⊥x軸于M,BN⊥y軸于N,過A作AH⊥x軸于H,兩線BN和AH交于Q,設OM=c,ON=d,c>0,d>o,根據(jù)S=S△ABQ-S△AOH-S△BNO-S矩形ONQH,和cd=4,求出c=2,d=2,得到B(-2,-2),把A(1,4)和B(-2,-2)代入拋物線得出方程組,求出方程組得解即可;
③充分利用(-2,-2)這一坐標,由△DFE相似于△DBO求得EF的長(含m),再表示出F到x軸的距離,利用△EDB的面積減去△EDF的面積即可建立S與m的函數(shù)關系
④S=m(1+-m),當m=時,S最大,把m=代入即可求出s,從而得到E的坐標.
點評:本題主要考查對用待定系數(shù)法求二次函數(shù)的解析式,反比例函數(shù)的圖象上點的坐標特征,解二元一次方程,三角形的面積,平行線的性質,勾股定理,函數(shù)的最值,銳角三角函數(shù)的定義等知識點的理解和掌握,能熟練地運用這些性質進行計算是解此題的關鍵,此題是一個拔高的題目,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點D(0,
7
9
3
),且頂點C的橫坐標為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標;
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標原點O,且經(jīng)過點A(3,3),一次函數(shù)的圖象經(jīng)過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關系(即前t個月的利潤總和s與t之間的關系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關系式;
(2)求截止到幾月末公司累積利潤可達30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習冊答案