閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0,∴≥0,

,只有當(dāng)a=b時(shí),等號(hào)成立.

結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值

(1)根據(jù)上述內(nèi)容,回答下列問題:現(xiàn)要制作一個(gè)長(zhǎng)方形(或正方形),使鏡框四周圍成的面積為4,請(qǐng)?jiān)O(shè)計(jì)出一種方案,使鏡框的周長(zhǎng)最小。

設(shè)鏡框的一邊長(zhǎng)為m(m>0),另一邊的為,考慮何時(shí)時(shí)周長(zhǎng)最小。

∵m>0, (定值),由以上結(jié)論可得:

只有當(dāng)m=       時(shí),鏡框周長(zhǎng)有最小值是       ;

(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)△OAB與△OCD的關(guān)系.

 

【答案】

(1)2,4

   (2)設(shè)P()

   可得:

因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012082812230925674122/SYS201208281224051174272211_DA.files/image003.png">(為定值)

所以:

此時(shí):,即:,得:

當(dāng):,S最小為24,

此時(shí),P(3,4),

OC=OA,OD=OB,∠COD=∠AOB

△OAB與△OCD全等。

【解析】(1)根據(jù)式子特殊性可以分別求出m的值以及分式的最值;

(2)設(shè)P(),把四邊形ABCD分割成四個(gè)小三角形,用含x的代數(shù)式表示出四邊形ABCD的面積,根據(jù)式子特殊性可以分別求出代數(shù)式的最小值,并可得到點(diǎn)P的坐標(biāo),從而判斷出△OAB與△OCD的關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
a
-
b
)2≥0,所以a-2
ab
+b≥0
,所以a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

(1)根據(jù)上述內(nèi)容,回答下列問題:若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
(2)探索應(yīng)用:如圖,有一均勻的欄桿,一端固定在A點(diǎn),在離A端2米的B處垂直掛著一個(gè)質(zhì)量為8千克的重物.若已知每米欄桿的質(zhì)量為0.5千克,現(xiàn)在欄桿的另一端C用一個(gè)豎直向上的拉力F拉住欄桿,使欄桿水平平衡.試精英家教網(wǎng)問欄桿多少長(zhǎng)時(shí),所用拉力F最小?是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答:若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀理解:對(duì)于任意正實(shí)數(shù)a,b,
∵(
a
-
b
2≥0,
∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值P,則a+b≥2
p
,
當(dāng)a=b,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若x>0,x+
4
x
的最小值為
 

(2)探索應(yīng)用:如圖,已知A(-2,0),B(0,-3),點(diǎn)P為雙曲線y=
6
x
(x>0)上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.若ab為定值P,則a+b≥2
P
,只有當(dāng)a=b時(shí),a+b有最小值2
P

(1)如圖1,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與點(diǎn)A、B不重合)過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.根據(jù)圖象驗(yàn)證,a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.

(2)根據(jù)上述內(nèi)容,回答下列問題
①若m>0,只有當(dāng)m=
1
1
時(shí),m+
1
m
有最小值為
2
2

②如圖2所示:A(-3,0),B(0,-4),P為雙曲線y=
12
x
(x>0)
上任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,求四邊形ABCD面積的最小值,并說明此時(shí)ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

(1)根據(jù)上述內(nèi)容,回答下列問題:
若m>0,只有當(dāng)m=
1
1
時(shí),m+
1
m
有最小值
2
2

(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線y=
12
x
(x>0)圖象上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值.
(3)判斷此時(shí)四邊形ABCD的形狀,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案