已知:在中,,tanB=,a=2,求b,c。

 

【答案】

解:b=       …………3分    c=…………5分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點A在x軸上,點C在y軸上,將邊BC折疊,使點B落在邊OA的點D處.已知折疊CE=5
5
,且tan∠EDA=
3
4

(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點P的坐標(biāo);
(3)是否存在過點D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A的坐標(biāo)為(0,2),以O(shè)A為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當(dāng)tan∠DAO=
12
時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標(biāo),并確定圖象經(jīng)過這三個點的二次函數(shù)的解析式;
(3)若點P滿足(2)中的條件,點M的坐標(biāo)為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD中,AB=AD=8,∠A=∠B=90°.E為AB上一點,且DE⊥DC,DF平分∠EDC交BC于F.
(1)請用尺規(guī)作圖作出DF,保留作圖痕跡,不要求寫作法;
(2)連EF,若tan∠ADE=
1
4
,求EF的長;
(3)在(2)的條件下,作DG⊥BC于G,連接AG,交DE于M,則MA的長為
8
5
2
8
5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•和平區(qū)模擬)已知,在Rt△ABC中,∠ACB=90°,點D、E分別在邊AB、AC上,連接DE并延長,交BC的延長線于點P.
(1)如圖①,當(dāng)∠B=∠DPB=30°時,連接AP,若△AEP與△BDP相似,AE=1,求CE的長.
(2)如圖②,若AD=AE=1,CE=2,BD=BC,求CP的長.
(3)如圖③,若AD=AE=1,tan∠BPD=
13
,設(shè)CE=x,△ABC的周長為y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=AD=DC=5,cos∠ABC=
35
,點E是AB邊的中點,點F是射線BC上的一動點,連接BD、DF.
(1)如圖1,當(dāng)DF⊥BC時,求tan∠ABD;
(2)如圖2,當(dāng)點F在BC的延長線上時,連接EF,交DC邊于點G,設(shè)CF=m,試求線段DG(用含m的代數(shù)式表示);
(3)設(shè)M是邊DC上一點,且5DM=8AE,連接AM,與對角線BD相交于點N,若△BDF∽△ADN,請求線段CF.

查看答案和解析>>

同步練習(xí)冊答案