如圖,拋物線y=-x2+bx+c與x軸、y軸分別交于A(-1,0)、B(0,3)兩點,頂點為D.

(1)求該拋物線的解析式;

(2)若該拋物線與x軸的另一個交點為E. 求四邊形ABDE的面積(3分)

(3)△AOB與△BDE是否相似?如果相似,請予以證明;如果不相似,請說明理由.

 

【答案】

(1)y= -x2+2x+3 (2) 9 (3)相似

【解析】(1)拋物線y=-x2+bx+c與x軸、y軸分別交于A(-1,0)、B(0,3)兩點,則列方程組為

解得b=2,c+3,∴y= -x2+2x+3

(2)若該拋物線與x軸的另一個交點為E,x+(-1)=2,解得x=3,所以E(3,0),

y= -x2+2x+3= ,D(1,4)

四邊形ABDE的面積=直角三角形AOB的面積+梯形OBDE的面積

∴S=9

(3)由A(-1,0)、B(0,3)、D(1,4)、E(3,0)得AO=1,BD= ,BO=3,

= = = ∴△AOB△BDE

考點:二次函數(shù)

點評:本題考查二次函數(shù),本題要求會用待定系數(shù)法求二次函數(shù)的解析式,掌握三角形相似的判定方法,會判斷兩個三角形相似

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖拋物線y=-
3
3
x2-
2
3
3
x+
3
,x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求A、B、C的坐標(biāo);
(2)把△ABC繞AB的中點M旋轉(zhuǎn)180°,得到四邊形AEBC:
①求E點坐標(biāo);
②試判斷四邊形AEBC的形狀,并說明理由;
(3)試探索:在直線BC上是否存在一點P,使得△PAD的周長最小?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖拋物線y=ax2-5ax+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標(biāo).
(2)請你設(shè)計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖拋物線y=-x2+5x+k經(jīng)過點C(4,0)與x軸交于另一點A,與y軸交于點B.
(1)求AC的長;
(2)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖拋物線y=ax2-5x+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標(biāo).
(2)該拋物線與y軸的交點為D,則四邊形ABCD為
等腰梯形
等腰梯形

(3)將此拋物線沿x軸向左平移3個單位,再向上平移2個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1996•山東)如圖拋物線y=ax2+bx+c,若OB=OC=
1
2
OA,則b=( 。

查看答案和解析>>

同步練習(xí)冊答案