如圖,ABCD是⊙O的內(nèi)接四邊形,延長(zhǎng)BC到E.已知∠BCD:∠ECD=3:2,那么∠BOD等于


  1. A.
    120°
  2. B.
    136°
  3. C.
    144°
  4. D.
    150°
C
分析:根據(jù)圓周角定理,∠BOD=2∠A,由已知可求∠BCD=108°,∠ECD=72°,故∠A=72°,所以∠BOD=144°.
解答:∵∠BCD:∠ECD=3:2,
∠BCD與∠ECD為鄰補(bǔ)角,
則∠BCD=108°,∠ECD=72°,
由圓內(nèi)接四邊形的對(duì)角互補(bǔ)知,∠A=180°-∠BCD=72°,
由圓周角定理知,∠BOD=2∠A=144°.
故選C.
點(diǎn)評(píng):本題利用了圓內(nèi)接四邊形的性質(zhì),圓周角定理,鄰補(bǔ)角的概念求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四邊形ABCD是⊙O的內(nèi)接四邊形,AB是⊙O的直徑,若再增加一個(gè)條件,就可使四邊形ABCD成為等腰梯形,你所增加的條件是(只寫出一個(gè)條件,圖中不再增加其他的字母和線段.(給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為2 a的正方形,AB為半圓O的直徑,CE切⊙O于E,與BA的延長(zhǎng)線交于F,求EF的長(zhǎng).
答:EF=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,ABCD是一張矩形紙片,AD=BC=1,AB=CD=5.在矩形ABCD的邊AB上取一點(diǎn)M,在CD上取一點(diǎn)N,將紙片沿MN折疊,使MB與DN交于點(diǎn)K,得到△MNK.
精英家教網(wǎng)
(1)若∠1=70°,求∠MKN的度數(shù);
(2)△MNK的面積能否小于
12
?若能,求出此時(shí)∠1的度數(shù);若不能,試說明理由;
(3)如何折疊能夠使△MNK的面積最大?請(qǐng)你用備用圖探究可能出現(xiàn)的情況,求最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為1的正方形,EFGH是內(nèi)接于ABCD的正方形,AE=a,AF=b,若SEFGH=
2
3
,則|b-a|等于( 。
A、
2
2
B、
2
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,G是BC上的一點(diǎn),DE⊥AG于E,BF⊥AG于F.
求證:△ABF≌△DAE.

查看答案和解析>>

同步練習(xí)冊(cè)答案