(2013•自貢)如圖,點(diǎn)B、C、D都在⊙O上,過(guò)點(diǎn)C作AC∥BD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=6
3
cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
分析:(1)求出∠COB的度數(shù),求出∠A的度數(shù),根據(jù)三角形的內(nèi)角和定理求出∠OCA的度數(shù),根據(jù)切線的判定推出即可;
(2)如解答圖所示,解題關(guān)鍵是證明△CDM≌△OBM,從而得到S陰影=S扇形BOC
解答:如圖,連接BC,OD,OC,設(shè)OC與BD交于點(diǎn)M.
(1)證明:根據(jù)圓周角定理得:∠COB=2∠CDB=2×30°=60°,
∵AC∥BD,
∴∠A=∠OBD=30°,
∴∠OCA=180°-30°-60°=90°,
即OC⊥AC,
∵OC為半徑,
∴AC是⊙O的切線;

(2)解:由(1)知,AC為⊙O的切線,
∴OC⊥AC.
∵AC∥BD,
∴OC⊥BD.
由垂徑定理可知,MD=MB=
1
2
BD=3
3

在Rt△OBM中,∠COB=60°,OB=
MB
cos30°
=
3
3
3
2
=6.
在△CDM與△OBM中,
∠CDM=∠OBM=30°
MD=MB
∠CMD=∠OMB=90°

∴△CDM≌△OBM
∴S△CDM=S△OBM
∴陰影部分的面積S陰影=S扇形BOC=
60π•62
360
=6π(cm2).
點(diǎn)評(píng):本題考查了平行線性質(zhì),切線的判定,扇形的面積,三角形的面積,圓周角定理的應(yīng)用,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)如圖,在平面直角坐標(biāo)系中,⊙A經(jīng)過(guò)原點(diǎn)O,并且分別與x軸、y軸交于B、C兩點(diǎn),已知B(8,0),C(0,6),則⊙A的半徑為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長(zhǎng)線于F,BG⊥AE于G,BG=4
2
,則△EFC的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)如圖,點(diǎn)O是正六邊形的對(duì)稱中心,如果用一副三角板的角,借助點(diǎn)O(使該角的頂點(diǎn)落在點(diǎn)O處),把這個(gè)正六邊形的面積n等分,那么n的所有可能取值的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)如圖,在函數(shù)y=
8
x
(x>0)
的圖象上有點(diǎn)P1、P2、P3…、Pn、Pn+1,點(diǎn)P1的橫坐標(biāo)為2,且后面每個(gè)點(diǎn)的橫坐標(biāo)與它前面相鄰點(diǎn)的橫坐標(biāo)的差都是2,過(guò)點(diǎn)P1、P2、P3…、Pn、Pn+1分別作x軸、y軸的垂線段,構(gòu)成若干個(gè)矩形,如圖所示,將圖中陰影部分的面積從左至右依次記為S1、S2、S3…、Sn,則S1=
4
4
,Sn=
8
n(n+1)
8
n(n+1)
.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)如圖,已知拋物線y=ax2+bx-2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),tan∠DBA=
12

(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案