【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=kx+1(k>0)與x軸、y軸分別相交于點A、B,tan∠ABO=.
(1)求k的值;
(2)若直線l:y=kx+1與雙曲線y= ()的一個交點Q在一象限內(nèi),以BQ為直徑的⊙I與x軸相明于點T,求m的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本.已知:兩種筆記本的進(jìn)價之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,馬陽光同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價分別是多少元?
(2)該文具店購入這兩種筆記本共60本,花費不超過296元,則購買甲種筆記本多少本時該文具店獲利最大?
(3)店主經(jīng)統(tǒng)計發(fā)現(xiàn)平均每天可售出甲種筆記本350本和乙種筆記本150本.如果甲種筆記本的售價每提高1元,則每天將少售出50本甲種筆記本;如果乙種筆記本的售價每提高1元,則每天少售出40本乙種筆記本,為使每天獲取的利潤更多,店主決定把兩種筆記本的價格都提高元,在不考慮其他因素的條件下,當(dāng)定為多少元時,才能使該文具店每天銷售甲、乙兩種筆記本獲取的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形中,,是的中點,頂點與點重合,將繞點旋轉(zhuǎn),角的兩邊分別交(或它們的延長線)于點,設(shè),有下列結(jié)論:①;②;③,其中正確的是( 。
A. ①B. ②③C. ①③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動點(不與端點A,B重合),作CD⊥OB于點D,若點C,D都在雙曲線y=上(k>0,x>0),則k的值為( 。
A. 25B. 18 C. 9D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,AC為對角線,AB=6,BC=8,點M是AD的中點,P、Q兩點同時從點M出發(fā),點P沿射線MA向右運動;點Q沿線段MD先向左運動至點D后,再向右運動到點M停止,點P隨之停止運動.P、Q兩點運動的速度均為每秒1個單位.以PQ為一邊向上作正方形PRLQ.設(shè)點P的運動時間為t(秒),正方形PRLQ與△ABC重疊部分的面積為S.
(1)當(dāng)點R在線段AC上時,求出t的值.
(2)求出S與t之間的函數(shù)關(guān)系式,并直接寫出取值范圍.(求函數(shù)關(guān)系式時,只須寫出重疊部分為三角形時的詳細(xì)過程,其余情況直接寫出函數(shù)關(guān)系式.)
(3)在點P、點Q運動的同時,有一點E以每秒1個單位的速度從C向B運動,當(dāng)t為何值時,△LRE是等腰三角形.請直接寫出t的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習(xí)俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡 (B)、菜餡(C)、三丁餡 (D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民人數(shù)是 人;
(2)將圖 ①②補充完整;( 直接補填在圖中)
(3)求圖②中表示“A”的圓心角的度數(shù);
(4)若居民區(qū)有8000人,請估計愛吃D湯圓的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,,,是等腰直角三角形且,把繞點B順時針旋轉(zhuǎn),得到,把繞點C順時針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達(dá)式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧的中點,點D是優(yōu)弧上一點,且∠D=30下列四個結(jié)論:①OA⊥BC;②BC=cm;③cos∠AOB=;④四邊形ABOC是菱形. 其中正確結(jié)論的序號是( )
A. ①③ B. ①②③④ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com