如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
(1)B(-1,0)E(0,4)C(4,0)設解析式是y=ax2+bx+c,
可得
a-b+c=0
c=4
16a+4b+c=0
,
解得
a=-1
b=3
c=4
,
∴y=-x2+3x+4;

(2)△BDC是直角三角形,
∵BD2=BO2+DO2=5,DC2=DO2+CO2=20,BC2=(BO+CO)2=25
∴BD2+DC2=BC2
∴△BDC是直角三角形.
點A坐標是(-2,0),點D坐標是(0,2),
設直線AD的解析式是y=kx+b,則
-2k+b=0
b=2
,
解得:
k=1
b=2
,
則直線AD的解析式是y=x+2,
設點P坐標是(x,x+2)
當OP=OC時x2+(x+2)2=16,
解得:x=-1±
7
x=-1-
7
不符合,舍去)此時點P(-1+
7
,1+
7

當PC=OC時(x+2)2+(4-x)2=16,方程無解;
當PO=PC時,點P在OC的中垂線上,
∴點P橫坐標是2,得點P坐標是(2,4);
∴當△POC是等腰三角形時,點P坐標是(-1+
7
,1+
7
)或(2,4);

(3)點M坐標是(
3
2
7
2
)
,點N坐標是(
3
2
,
25
4
),∴MN=
11
4

設點P為(x,x+2),Q(x,-x2+3x+4),則PQ=-x2+2x+2
①若PQNM是菱形,則PQ=MN,可得x1=0.5,x2=1.5
當x2=1.5時,點P與點M重合;當x1=0.5時,可求得PM=
2
,所以菱形不存在.
②能成為等腰梯形,作QH⊥MN于點H,作PJ⊥MN于點J,則NH=MJ,
25
4
-(-x2+3x+4)=x+2-
7
2
,
解得:x=2.5,
此時點P的坐標是(2.5,4.5).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax+c與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且|OC|=3|OA|
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關系式;
②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖長為2的線段PQ在x的正半軸上,從P、Q作x軸的垂線與拋物線y=x2交于點P′、Q′.
(1)已知P的坐標為(k,0),求直線OP′的函數(shù)解析式;
(2)若直線OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關于x的方程kx2+(3k+1)x+3=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根;
(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個交點的橫坐標均為整數(shù),且k為正整數(shù),求k值;
(3)在(2)的條件下,設拋物線的頂點為M,直線y=-2x+9與y軸交于點C,與直線OM交于點D.現(xiàn)將拋物線平移,保持頂點在直線OD上.若平移的拋物線與射線CD(含端點C)只有一個公共點,求它的頂點橫坐標的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點A(-3,6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求這個二次函數(shù)的解析式,并在下面的坐標系中畫出該二次函數(shù)的圖象;
(2)設D為線段OC上的一點,滿足∠DPC=∠BAC,求點D的坐標;
(3)在x軸上是否存在一點M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MNBC交AC于點N.以MN為直徑作⊙O,并在⊙O內作內接矩形AMPN.令AM=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當x為何值時,⊙O與直線BC相切;
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
3
3
x2+
2
3
3
x-
3
交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求點A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉180°,得到四邊形AEBC,求E點的坐標;
(3)試判斷四邊形AEBC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,利用兩面夾角為135°且足夠長的墻,圍成梯形圍欄ABCD,∠C=90°,新建墻BCD總長為15m,則當CD=______m時,梯形圍欄的面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在邊長為4的正方形EFCD上截去一角,成為五邊形ABCDE,其中AF=2,BF=1,在AB上取一點P,設P到DE的距離PM=x,P到CD的距離PN=y,試寫出矩形PMDN的面積S與x之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案