【題目】如圖,四邊形的內(nèi)接四邊形,四邊形兩組對(duì)邊的延長(zhǎng)線分別相交于點(diǎn),且,,連接

1)求的度數(shù);

2)當(dāng)的半徑等于2時(shí),請(qǐng)直接寫出的長(zhǎng).(結(jié)果保留)

【答案】145°;(2)π.

【解析】

1)根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠DCE=∠A,根據(jù)三角形外角性質(zhì)得到∠EDF=∠A50°,然后根據(jù)三角形內(nèi)角和定理得到∠A50°+∠A40°180°,從而解方程得到∠A的度數(shù);

2)連接OB、OD,如圖,根據(jù)圓周角定理得到∠BOD2A90°,然后利用弧長(zhǎng)公式計(jì)算的長(zhǎng).

1)∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠DCE=A

∵∠EDF=A+F=A+50°

而∠EDF+DCE+E=180°,

∴∠A+50°+A+40°=180°,

∴∠A=45°;

2)連接OB、OD,如圖,

∵∠BOD=2A=90°,

的長(zhǎng)π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形內(nèi)接于半圓,為直徑,,過(guò)點(diǎn)于點(diǎn),連接于點(diǎn)F.,,則的長(zhǎng)為 (  )

A.8B.10C.15D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請(qǐng)問(wèn)1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),與射線BC重合時(shí)就停止旋轉(zhuǎn),射線BD與線段AC相交于點(diǎn)D,點(diǎn)M是線段BD的中點(diǎn).

1)求線段BC的長(zhǎng);

2)①當(dāng)點(diǎn)D與點(diǎn)A、點(diǎn)C不重合時(shí),過(guò)點(diǎn)DDEAB于點(diǎn)E,DFBC于點(diǎn)F,連接ME,MF,在射線BD旋轉(zhuǎn)的過(guò)程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請(qǐng)說(shuō)明理由.

②在①的條件下,連接EF,直接寫出△EFM面積的最小值______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),與射線BC重合時(shí)就停止旋轉(zhuǎn),射線BD與線段AC相交于點(diǎn)D,點(diǎn)M是線段BD的中點(diǎn).

1)求線段BC的長(zhǎng);

2)①當(dāng)點(diǎn)D與點(diǎn)A、點(diǎn)C不重合時(shí),過(guò)點(diǎn)DDEAB于點(diǎn)E,DFBC于點(diǎn)F,連接ME,MF,在射線BD旋轉(zhuǎn)的過(guò)程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請(qǐng)說(shuō)明理由.

②在①的條件下,連接EF,直接寫出△EFM面積的最小值______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的頂點(diǎn)軸上,反比例函數(shù))的圖像經(jīng)過(guò)頂點(diǎn),和邊的中點(diǎn).若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且ABAC.延長(zhǎng)CD至點(diǎn)E,使CEBD,連接AE

1)求證:AD平分∠BDE;

2)若AB//CD,求證:AE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】貨車和轎車分別從甲、乙兩地同時(shí)出發(fā),沿同一公路相向而行.轎車出發(fā)2.4h后休息,直至與貨車相遇后,以原速度繼續(xù)行駛.設(shè)貨車出發(fā)xh后,貨車、轎車分別到達(dá)離甲地y1kmy2km的地方,圖中的線段OA、折線BCDE分別表示y1、y2x之間的函數(shù)關(guān)系.

(1)求點(diǎn)D的坐標(biāo),并解釋點(diǎn)D的實(shí)際意義;

(2)求線段DE所在直線的函數(shù)表達(dá)式;

(3)當(dāng)貨車出發(fā)________h時(shí),兩車相距200km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)都為1,線段AB的端點(diǎn)落在格點(diǎn)上,要求畫一個(gè)四邊形,所作的四邊形為中心對(duì)稱圖形,同時(shí)滿足下列要求:

1)在圖1中畫出以AB為一邊的四邊形;

2)分別在圖2和圖3中各畫出一個(gè)以AB為一條對(duì)角線的四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案