【題目】如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(﹣1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動點(diǎn);一次函數(shù)y=kx﹣4k(k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.

(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(﹣4,m)時,求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線段AQ、CQ上,點(diǎn)M以每秒3個單位長度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動,同時,點(diǎn)N以每秒1個單位長度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動,當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒.
①連接AN,當(dāng)△AMN的面積最大時,求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點(diǎn)P的坐標(biāo);若不能,請說明你的理由.

【答案】
(1)

解:設(shè)拋物線的解析式為:y=a(x+3)(x+1),

∵拋物線經(jīng)過點(diǎn)C(0,3),

∴3=a×3×1,解得a=1.

∴拋物線的解析式為:y=(x+3)(x+1)=x2+4x+3


(2)

證明:在拋物線解析式y(tǒng)=x2+4x+3中,當(dāng)x=﹣4時,y=3,∴P(﹣4,3).

∵P(﹣4,3),C(0,3),

∴PC=4,PC∥x軸.

∵一次函數(shù)y=kx﹣4k(k≠0)的圖象交x軸于點(diǎn)Q,當(dāng)y=0時,x=4,

∴Q(4,0),OQ=4.

∴PC=OQ,又∵PC∥x軸,

∴四邊形POQC是平行四邊形,

∴∠OPC=∠AQC


(3)

解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.

如答圖1所示,過點(diǎn)N作ND⊥x軸于點(diǎn)D,則ND∥OC,

∴△QND∽△QCO,

,即 ,解得:ND=3﹣ t.

設(shè)S=SAMN,則:

S= AMND= 3t(3﹣ t)=﹣ (t﹣ 2+

又∵AQ=7,∴點(diǎn)M到達(dá)終點(diǎn)的時間為t= ,

∴S=﹣ (t﹣ 2+ (0<t≤ ).

∵﹣ <0, ,且x< 時,y隨x的增大而增大,

t=2.5時已超過運(yùn)動時間又因為開口向下所以取 ,

∴當(dāng)t= 時,△AMN的面積最大.

②假設(shè)直線PQ能夠垂直平分線段MN,則有QM=QN,且PQ⊥MN,PQ平分∠AQC.

由QM=QN,得:7﹣3t=5﹣t,解得t=1.

設(shè)P(x,x2+4x+3),

若直線PQ⊥MN,則:過P作直線PE⊥x軸,垂足為E,

則△PEQ∽△MDN,

,

∴x= ,

∴P( )或( ,

∴直線PQ能垂直平分線段MN


【解析】(1)利用交點(diǎn)式求出拋物線的解析式;(2)證明四邊形POQC是平行四邊形,則結(jié)論得證;(3)①求出△AMN面積的表達(dá)式,利用二次函數(shù)的性質(zhì),求出△AMN面積最大時t的值.注意:由于自變量取值范圍的限制,二次函數(shù)并不是在對稱軸處取得最大值;②直線PQ上的點(diǎn)到∠AQC兩邊的距離相等,則直線PQ能平分∠AQC,所以直線PQ能垂直平分線段MN.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為2,如果將線段BD繞著點(diǎn)B旋轉(zhuǎn)后,點(diǎn)D落在CB的延長線上的D’處,那么tan∠BAD’等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長相同的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)P,則tan∠APD的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動,直到點(diǎn)P到達(dá)點(diǎn)D后才停止.已知△PAD的面積S(單位:cm2)與點(diǎn)P移動的時間(單位:s)的函數(shù)如圖②所示,則點(diǎn)P從開始移動到停止移動一共用了秒(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1∥l2∥l3 , 且l1與l2的距離為1,l2與l3的距離為3,把一塊含有45°角的直角三角形如圖放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長度為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生參加家務(wù)勞動的情況,某中學(xué)隨機(jī)抽取部分學(xué)生,統(tǒng)計他們雙休日兩天家務(wù)勞動的時間,將統(tǒng)計的勞動時間(單位:分鐘)分成5組:30≤x<60,60≤x<90,90≤x<120,120≤x<150,150≤x<180,繪制成頻數(shù)分布直方圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是
(2)根據(jù)小組60≤x<90的組中值75,估計該組中所有數(shù)據(jù)的和為;
(3)該中學(xué)共有1000名學(xué)生,估計雙休日兩天有多少名學(xué)生家務(wù)勞動的時間不小于90分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動,點(diǎn)Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動,其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動,設(shè)它們運(yùn)動的時間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形. ①若a= ,求PQ的長;
②是否存在實數(shù)a,使得點(diǎn)P在∠ACB的平分線上?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(1+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十六屆亞遠(yuǎn)會共頒發(fā)金牌477枚,如圖是不完整的金牌數(shù)條形統(tǒng)計圖和扇形統(tǒng)計圖,
根據(jù)以上信息.觶答下列問題:
(1)請將條形統(tǒng)計圖補(bǔ)充完整;
(2)中國體育健兒在第十六屆亞運(yùn)會上共奪得金牌枚;
(3)在扇形統(tǒng)計圖中,日本代表團(tuán)所對應(yīng)的扇形的圓心角約為°(精確到1°).

查看答案和解析>>

同步練習(xí)冊答案