精英家教網如圖,OA⊥OB,∠AOD=
12
∠COD,∠BOC=3∠AOD,則∠COD的度數(shù)是
 
分析:設∠AOD=x°,根據(jù)∠BOC+∠COD+∠AOD=90°,即可列方程求解.
解答:解:設∠AOD=x°.
∴∠COD=2x°,∠BOC=3x°,
∵∠BOC+∠COD+∠AOD=90°,
∴3x+2x+x=90,
解得:x=15,
∴∠COD=30°.
故答案是:30°.
點評:本題主要考查了垂直的定義,根據(jù)條件轉化為方程問題是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•玉田縣一模)如圖,OA⊥OB,△CDE的邊CD在OB上,∠ECD=45°.將△CDE繞點C逆時針旋轉75°,點E的對應點N恰好落在OA上,則
OC
CE
的值為
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OA=OB,OC=OD,∠O=50°,∠D=30°,則∠AEC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OA⊥OB,OC⊥OD,O是垂足,∠BOC=55°,那么∠AOD=
135°
135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OA⊥OB,∠COD為平角,若OC平分∠AOB,則∠BOD=
135
135
°.

查看答案和解析>>

同步練習冊答案