按要求解答下面問題
(1)計算:6cos60°-(sin21°-1)0×5tan45°;.
(2)解方程:4x(3x-2)=6x-4.
分析:(1)先計算特殊角的三角函數(shù)值、零指數(shù)冪,然后計算乘法,最后計算減法;
(2)先把原方程移項,然后通過提取公因式對等式的左邊進行因式分解.
解答:解:(1)原式=6×
1
2
-1×5×1=3-5=-2;

(2)由原方程,得:4x(3x-2)-2(3x-2)=0,
則(4x-2)(3x-2)=0,
所以4x-2=0或3x-2=0,
解得x1=
1
2
,x2=
2
3
點評:本題考查了解一元二次方程--因式分解法,特殊角的三角函數(shù)值.因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•湛江)先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化為
(x+2)(x-2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
x+2>0
x-2>0
 
x+2<0
x-2<0

解不等式組①,得x>2,
解不等式組②,得x<-2,
∴(x+2)(x-2)>0的解集為x>2或x<-2,
即一元二次不等式x2-4>0的解集為x>2或x<-2.
(1)一元二次不等式x2-16>0的解集為
x>4或x<-4
x>4或x<-4

(2)分式不等式
x-1
x-3
>0
的解集為
x>3或x<1
x>3或x<1
;
(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y(tǒng)2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4-x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年福建泉州第三中學八年級上學期期中考試數(shù)學試題(帶解析) 題型:解答題

先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式的最小值.
解:


的最小值是.
(1)求代數(shù)式的最小值;
(2)求代數(shù)式的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長m)的空地上建一個長方形花園,花園一邊靠墻,另三邊用總長為m的柵欄圍成. 如圖,設(m),請問:當取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(廣東湛江卷)數(shù)學(解析版) 題型:解答題

先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式x2﹣4>0

解:∵x2﹣4=(x+2)(x﹣2)

∴x2﹣4>0可化為

(x+2)(x﹣2)>0

由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得

解不等式組①,得x>2,

解不等式組②,得x<﹣2,

∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,

即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.

(1)一元二次不等式x2﹣16>0的解集為      ;

(2)分式不等式的解集為      ;

(3)解一元二次不等式2x2﹣3x<0.

 

查看答案和解析>>

同步練習冊答案