【題目】如圖,ABBC于點(diǎn)B,DCBC于點(diǎn)CDE平分∠ADCBC于點(diǎn)E,點(diǎn)F為線段CD延長(zhǎng)線上一點(diǎn),∠BAF=∠EDF

(1)求證:∠DAF=∠F;

(2)在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出所有與∠CED互余的角.

【答案】(1)證明見(jiàn)解析;(2)與∠CED互余的角有∠ADE,CDE,F,FAD.

【解析】

1)依據(jù)ABBC于點(diǎn)B,DCBC于點(diǎn)C,即可得到ABCF,進(jìn)而得出∠BAF+F180°,再根據(jù)∠BAF=∠EDF,即可得出EDAF,依據(jù)三角形外角性質(zhì)以及角平分線的定義,即可得到∠DAF=∠F;(2)結(jié)合圖形,根據(jù)余角的概念,即可得到所有與∠CED互余的角.

解:(1)ABBC于點(diǎn)B,DCBC于點(diǎn)C,

∴∠B+C=180°,

ABCF,

∴∠BAF+F=180°,

∵∠BAF=EDF,

∴∠EDF+F=180°,

EDAF,

∴∠ADE=DAF,EDC=F,

DE平分ADC,

∴∠ADE=CDE,

∴∠DAF=F;

(2)∵∠C=90°,

∴∠CED+CDE=90°,

∴∠CED與∠CDE互余,

∵∠ADE=DAF=EDC=F,

CED互余的角有ADE,CDE,F,FAD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,無(wú)論k取何實(shí)數(shù),直線y=(k-1)x+4-5k總經(jīng)過(guò)定點(diǎn)P,則點(diǎn)P與動(dòng)點(diǎn)Q(5m-1,5m+1)的距離的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程(組)解應(yīng)用題:

為順利通過(guò)國(guó)家義務(wù)教育均衡發(fā)展驗(yàn)收,我市某中學(xué)配備了兩個(gè)多媒體教室,購(gòu)買了筆記本電腦和臺(tái)式電腦共120臺(tái),購(gòu)買筆記本電腦用了7.2萬(wàn)元,購(gòu)買臺(tái)式電腦用了24萬(wàn)元,已知筆記本電腦單價(jià)是臺(tái)式電腦單價(jià)的1.5倍,那么筆記本電腦和臺(tái)式電腦的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某電線桿(底部可到達(dá))的高度,準(zhǔn)備了如下的測(cè)量工具:
①平面鏡;②皮尺;③長(zhǎng)為2米的標(biāo)桿;④高為1.5m的測(cè)角儀(測(cè)量仰角、俯角的儀器),請(qǐng)根據(jù)你所設(shè)計(jì)的測(cè)量方案,回答下列問(wèn)題:

(1)畫(huà)出你的測(cè)量方案示意圖,并根據(jù)你的測(cè)量方案寫(xiě)出你所選用的測(cè)量工具;
(2)結(jié)合你的示意圖,寫(xiě)出求電線桿高度的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.

(1)如圖1,若點(diǎn)A、C、E在一條直線上時(shí),我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為:   ,線段AD與BE所成的銳角度數(shù)為   °;

(2)如圖2,當(dāng)點(diǎn)A、C、E不在一條直線上時(shí),請(qǐng)證明(1)中的結(jié)論仍然成立;

靈活運(yùn)用:

如圖3,某廣場(chǎng)是一個(gè)四邊形區(qū)域ABCD,現(xiàn)測(cè)得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形中,,垂足為點(diǎn),直線過(guò)點(diǎn),且,點(diǎn)為線段上一點(diǎn),連接,∠BCG與∠BCE的角平分線CM、CN分別交于點(diǎn)M、N,若,則=_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到A1B1C1

(1)在圖中畫(huà)出△A1B1C1;

(2)點(diǎn)A1,B1,C1的坐標(biāo)分別為   、      ;

(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a,b表示,且(ab+1002+|a20|0P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).

1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離.

2)已知線段OB上有點(diǎn)C|BC|6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù).

3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,.點(diǎn)P能移動(dòng)到與AB重合的位置嗎?若都不能,請(qǐng)直接回答.若能,請(qǐng)直接指出,第幾次移動(dòng)與哪一點(diǎn)重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】白色污染(White Pollution)是人們對(duì)難降解的塑料垃圾(多指塑料袋)污染環(huán)境現(xiàn)象的一種形象稱謂.為了讓全校同學(xué)感受丟棄塑料袋對(duì)環(huán)境的影響,小彬隨機(jī)抽取某小區(qū)戶居民,記錄了這些家庭年某個(gè)月丟棄塑料袋的數(shù)量(單位:個(gè)):

請(qǐng)根據(jù)上述數(shù)據(jù),解答以下問(wèn)題:

(1)小彬按“組距為”列出了如下的頻數(shù)分布表(每組數(shù)據(jù)含最小值),請(qǐng)將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)直方圖;

(2)根據(jù)(1)中的直方圖可以看出,這戶居民家這個(gè)月丟棄塑料袋的個(gè)數(shù)在 組的家庭最多;(填分組序號(hào))

(3)根據(jù)頻數(shù)分布表,小彬又畫(huà)出了右圖所示的扇形統(tǒng)計(jì)圖.請(qǐng)將統(tǒng)計(jì)圖中各組占總數(shù)的百分比填在圖中,并求出組對(duì)應(yīng)的扇形圓心角的度數(shù);

(4)若小區(qū)共有戶居民家庭,請(qǐng)你估計(jì)每月丟棄的塑料袋數(shù)量不小于個(gè)家庭個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案