【題目】若∠A 的兩邊與∠B 的兩邊分別平行,且∠A-∠B40°,則∠A_____度.

【答案】110°

【解析】

根據(jù)∠A-∠B40°,再根據(jù)平行線性質(zhì)得出∠A+B=180°,即可求解.

解:∵∠A與∠B的兩邊分別平行,

A-∠B40°,

∴∠A+B=180°,

∴∠A=110°,

故答案為:110°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿對(duì)角線BD折疊,設(shè)重疊部分為△EBD,則下列說法錯(cuò)誤的是(
A.AB=CD
B.∠BAE=∠DCE
C.EB=ED
D.∠ABE一定等于30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法中正確的是(

A.一個(gè)數(shù)的倍數(shù)總比它的因數(shù)大B.任何正整數(shù)的因數(shù)至少有兩個(gè)

C.1是所有正整數(shù)的因數(shù)D.在正整數(shù)中,所有的偶數(shù)都是合數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上與﹣3的距離等于4的點(diǎn)表示的數(shù)是(
A.1
B.﹣7
C.1或﹣7
D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為直線AB上一點(diǎn),DOE=90°

1如圖1AOC=130°,OD平分AOC

BOD的度數(shù)

請(qǐng)通過計(jì)算說明OE是否平分BOC

2如圖2,BOEAOE=27AOD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)用8塊棱長(zhǎng)為3 cm的小正方體,搭建了一個(gè)如圖所示的積木,下列說法中不正確的是( )

A. 從左面看這個(gè)積木時(shí),看到的圖形面積是27cm2

B. 從正面看這個(gè)積木時(shí),看到的圖形面積是54cm2

C. 從上面看這個(gè)積木時(shí),看到的圖形面積是45cm2

D. 分別從正面、左面、上面看這個(gè)積木時(shí),看到的圖形面積都是72cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果圓柱底面直徑為6cm,母線長(zhǎng)為4cm,那么圓柱的側(cè)面積為( 。

A.24πcm2B.36πcm2C.12πcm2D.48πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)三棱柱包裝盒,它的底面是邊長(zhǎng)為10cm的正三角形,三個(gè)側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個(gè)平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個(gè)三棱柱包裝盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個(gè)三棱柱包裝盒的側(cè)面全部包貼滿.在圖3中,將三棱柱沿過點(diǎn)A的側(cè)棱剪開,得到如圖4的側(cè)面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進(jìn)行研究.

(1)請(qǐng)?jiān)趫D4中畫出拼接后符合條件的平行四邊形;

(2)請(qǐng)?jiān)趫D2中,計(jì)算裁剪的角度(即∠ABM的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上到原點(diǎn)的距離8個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)為(
A.8
B.﹣8
C.8或﹣8
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案