如圖,已知C為線段AB的中點,AD∥CE,且AD=CE,試說明∠D=∠E.

答案:
提示:

提示:利用SAS說明兩個三角形全等,再利用全等三角形的特征就可得出結論


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知E為線段AB的中點,四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑精英家教網(wǎng)的⊙B與AB邊相交于F點,延長CB交⊙B于G點.
求證:(1)AD是⊙B的切線;
(2)DE2=EF•CG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知C為線段AB的中點,D在線段CB上.若DA=6,DB=4,則CD=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知C為線段AB的中點,D為線段AC的中點.如果線段DC=3cm,那么AB=
12
12
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知B為線段AC上一點,M是線段AB的中點,N為線段AC的中點,P為NA的中點,Q為MA的中點,求MN:PQ的值。

查看答案和解析>>

科目:初中數(shù)學 來源:2006年上海市松江區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

如圖,已知E為線段AB的中點,四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙B與AB邊相交于F點,延長CB交⊙B于G點.
求證:(1)AD是⊙B的切線;
(2)DE2=EF•CG.

查看答案和解析>>

同步練習冊答案