如圖,A,B,C三點在同一平面內(nèi),從山腳纜車站A測得山頂C的仰角為45°,測得另一纜車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計).(數(shù)學公式,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

解:
(1)過B作BD⊥AM于點D.
在Rt△ADB中,,
∵∠BAD=30°,AB=500,
∴BD=AB•sin30°=250.
即纜車站B與纜車站A間的垂直距離為250米;

(2)過C作CF垂直于坡底的水平線AM,垂足為點F,
過B作BE∥AF,交CF于點E.
設山頂C與纜車站B間的垂直距離CE=x,
在Rt△CBE中,∠CBE=60°,

在Rt△ADB中,AD=AB•sin60°=250,
在Rt△CAF中,∠CAF=45°,
∴AF=CF.
,

解得

答:山頂與纜車站A間的垂直距離約為683米.
分析:(1)利用30°的正弦值即可求得BD長;
(2)易得AF=CF,設CE為未知數(shù),利用60°的正切值可求得BE長;利用AF=CF可求得CE長,加上(1)中BD長即為山頂C與纜車站A間的垂直距離.
點評:考查仰角的定義,能借助仰角構(gòu)造直角三角形并解直角三角形是仰角問題常用的方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、如圖,A、C、E三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,A、Q、R三點在一條直線上,S為直線外一點,∠AQS=136°,∠QRS=64°,則∠QSR=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A,B,C三點在同一平面內(nèi),從山腳纜車站A測得山頂C的仰角為45°,測得另一纜精英家教網(wǎng)車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A、B、C三點在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,O,B三點在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關(guān)系?為什么?

查看答案和解析>>

同步練習冊答案