如圖,四邊形ABCD中,對(duì)角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個(gè)作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)成命題.
(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請(qǐng)證明;若不是,請(qǐng)舉出反例;
(2)寫出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說明.(命題請(qǐng)寫成“如果…,那么….”的形式)
(1)根據(jù)平行得出相似三角形,推出比例式,即可求出OB=OD,(或用全等)根據(jù)平行四邊形的判定推出即可。
(2)根據(jù)等腰梯形和平行四邊形的判定判斷即可。
解析分析:(1)根據(jù)平行得出相似三角形,推出比例式,即可求出OB=OD,(或用全等)根據(jù)平行四邊形的判定推出即可。
(2)根據(jù)等腰梯形和平行四邊形的判定判斷即可。
解:(1)以①②作為條件構(gòu)成的命題是真命題,證明如下:
∵AB∥CD, ∴△AOB∽△COD!。
∵AO=OC,∴OB=OD。
∴四邊形ABCD是平行四邊形。
(2)。└鶕(jù)①③作為條件構(gòu)成的命題是假命題,即:如果有一組對(duì)邊平行,而另一組對(duì)邊相等的四邊形時(shí)平行四邊形,如等腰梯形符合,但不是平行四邊形;
ⅱ)根據(jù)②③作為條件構(gòu)成的命題是假命題,即:如果一個(gè)四邊形ABCD的對(duì)角線交于O,且OA=OC,AD=BC,那么這個(gè)四邊形時(shí)平行四邊形,如圖,根據(jù)已知不能推出OB=OD或AD∥BC或AB=DC,即四邊形不是平行四邊形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,∠ACB=90°,∠A<45°,點(diǎn)O為AB中點(diǎn),一個(gè)足夠大的三角板的直角頂點(diǎn)與點(diǎn)O重合,一邊OE經(jīng)過點(diǎn)C,另一邊OD與AC交于點(diǎn)M.
(1)如圖1,當(dāng)∠A=30°時(shí),求證:MC2=AM2+BC2;
(2)如圖2,當(dāng)∠A≠30°時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)寫出你認(rèn)為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點(diǎn)O旋轉(zhuǎn),若直線OD與直線AC相交于點(diǎn)M,直線OE與直線BC相交于點(diǎn)N,連接MN,則MN2=AM2+BN2成立嗎?
答: (填“成立”或“不成立”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長為 ;
②當(dāng)AC=3,BC=4時(shí),AD的長為 ;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川南充8分)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(diǎn)(不與B,C重合),過點(diǎn)P作∠APE=∠B,PE交CD 于E.
(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com