試?yán)靡蚴椒纸獾姆椒ㄕf(shuō)明兩個(gè)連續(xù)奇數(shù)的平方差一定是8的倍數(shù)

答案:
解析:

  解:設(shè)兩個(gè)連續(xù)奇數(shù)分別為2n+1,2n+3

  則(2n+3)2-(2n+1)2=(2n+3+2n+1)(2n+3-2n-1)

  =2(4n+4)=8(n+1)

  ∴(2n+3)2-(2n+1)2一定是8的倍數(shù).

  分析:兩個(gè)連續(xù)奇數(shù)可表示為2n+1,2n+3,只需利用平方差公式將(2n+3)2-(2n+1)2分解因式后即可


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

24、閱讀并解決問(wèn)題.
對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添-適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實(shí)數(shù),試比較x2-4x+5與-x2+4x-4的大小,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、小剛同學(xué)動(dòng)手剪了如圖①所示的正方形與長(zhǎng)方形紙片若干張.
觀察與操作:
(1)他拼成如圖②所示的正方形,根據(jù)四個(gè)小紙片的面積之和等于大正方形的面積,得到:a2+2ab+b2=(a+b)2,驗(yàn)證了完全平方公式;即:多項(xiàng)式  a2+2ab+b2 分解因式后,其結(jié)果表示正方形的長(zhǎng)(a+b)與寬(a+b)兩個(gè)整式的積.
(2)當(dāng)他拼成如圖③所示的矩形,由面積相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多項(xiàng)式 a2+3ab+2b2 分解因式后,其結(jié)果表示矩形的長(zhǎng)(a+2b)與寬(a+b)兩個(gè)整式的積.
問(wèn)題解決:
(1)請(qǐng)你依照小剛的方法,利用拼圖分解因式:a2+4ab+3b2.(畫圖說(shuō)明,并寫出其結(jié)果)
(2)試猜想面積是2a2+5ab+3b2的矩形,其長(zhǎng)與寬分別是多少?(畫圖說(shuō)明,并寫出其結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面材料:
若設(shè)關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根為x1,x2,那么由根與系數(shù)的關(guān)系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項(xiàng)式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請(qǐng)用上面的方法將多項(xiàng)式4x2+8x-1分解因式.
(2)判斷二次三項(xiàng)式2x2-4x+7在實(shí)數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說(shuō)明理由.
(3)如果關(guān)于x的二次三項(xiàng)式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用十字相乘法把二次三項(xiàng)式分解因式的方法叫做十字相乘法,閱讀用十字相乘法因式分解x2-5x+6.即:x2-5x+6=(x-2)(x-3)
試?yán)檬窒喑朔ń夥匠蹋?)x2+4x+3=0;(2)x2+5x-6=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案