已知:正方形ABCD,以A為旋轉(zhuǎn)中心,旋轉(zhuǎn)AD至AP,連接BP、DP.
(1)若將AD順時針旋轉(zhuǎn)30°至AP,如圖3所示,求∠BPD的度數(shù)?
(2)若將AD順時針旋轉(zhuǎn)α度(0°<α<90°)至AP,求∠BPD的度數(shù)?
(3)若將AD逆時針旋轉(zhuǎn)α度(0°<α<180°)至AP,請分別求出0°<α<90°、α=90°、90°<α<180°三種情況下的∠BPD的度數(shù)(圖4、圖5、圖6).

【答案】分析:(1)利用旋轉(zhuǎn)的性質(zhì)可以判定△ABP是等邊三角形后即可得到∠APB=60°,進(jìn)而可以求得∠BPD的度數(shù);
(2)利用上題證得的結(jié)論即可得到∠ABP+∠BPA+∠APD+∠ADP=270°.從而可以得到∠BPD=∠BPA+∠APD=×270°=135°.
(3)分①當(dāng)0°<α<90°時、②當(dāng)α=90°時、③當(dāng)90°<α<180°時三種情況討論,證明的方法同(2).
解答:解:(1)∵AD=AP,∴∠APD=∠ADP.
∵∠DAP=30°,
∴∠APD=∠ADP=(180°-∠DAP)=(180°-30°)=75°.(1分)
∵∠DAP=30°,
∴∠BAP=90°-∠DAP=60°.(1分)
又∵AB=AD=AP,∴△ABP是等邊三角形.
∴∠APB=60°.
∴∠BPD=∠BPA+∠APD=60°+75°=135°.(1分)
說明:其他方法,可參照得分.

(2)∵∠ABP+∠BPD+∠ADP+∠DAB=360°,(1分)∠DAB=90°,
∴∠ABP+∠BPD+∠ADP=270°,
即∠ABP+∠BPA+∠APD+∠ADP=270°.
∵AD=AP,∴∠APD=∠ADP.
∵AB=AD=AP,∴∠ABP=∠APB.
∴∠BPD=∠BPA+∠APD=×270°=135°.(1分)
說明:其他方法請參照評分.

(3)①當(dāng)0°<α<90°時,如圖2
∵AD=AP,∠DAP=α
∴∠APD=∠ADP=α.
∵AB=AD=AP,∠BAP=90°+α,
∴∠ABP=∠APB==45°-α.
∴∠BPD=∠APD-∠APB==45°.(2分)
②當(dāng)α=90°時,如圖3,
∵∠BAD+∠DAP=180°,
∴點(diǎn)B、A、P在同一直線上.
∴∠BPD=∠APD=(180°-90°)=45°.(1分)
③當(dāng)90°<α<180°時,如圖4.
∵∠APD=α.∠BAP=[360°-90°-α]=270°-α.∠BPA=α-45°.
∴∠BPD=∠BPA+∠DPA=90°-α-45°=45°.(2分)
說明:其他方法請參照評分.

點(diǎn)評:此題主要考查了正方形的性質(zhì)、圖形的旋轉(zhuǎn)變化、全等三角形及相似三角形的判定和性質(zhì)、三角形面積的計(jì)算方法等知識的綜合應(yīng)用能力,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點(diǎn),且AE=BF=CG=DH,設(shè)小正方形EFGH的面積為s,AE為x,則s關(guān)于x的函數(shù)圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)如圖,已知在正方形ABCD中,M是AB的中點(diǎn),E是AB延長線上一點(diǎn),MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
(2)若將上述條件中的“M是AB的中點(diǎn)”改為“M是AB上或AB延長線上任意一點(diǎn)”,其余條件不變.試問(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點(diǎn),動點(diǎn)P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運(yùn)動,同時動點(diǎn)Q在線段FC上從F?C以1cm/s的速度運(yùn)動,動點(diǎn)G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運(yùn)動時間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運(yùn)動過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個值;若改變,請說明理由;
(3)當(dāng)t為何值時,△CGE為等腰三角形并求出此時△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知在正方形ABCD中,P是BC上的一點(diǎn),且AP=DP.求證:P是BC中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
6
.下列結(jié)論:
①△APD≌△AEB﹔②點(diǎn)B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結(jié)論的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案