已知關(guān)于x的一元二次方程 (m+1)x2+2mx+m-3=0 有兩個不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m取滿足條件的最小奇數(shù)時,求方程的根.
【答案】分析:(1)一元二次方程有兩不等實(shí)數(shù)根,則根的判別式△=b2-4ac>0,建立關(guān)于m的不等式,求出m的取值范圍.還要注意二次項(xiàng)系數(shù)不為0;
(2)在m的范圍內(nèi),找到最小奇數(shù),然后把m的值代入一元二次方程 (m+1)x2+2mx+m-3=0中,再解出方程的解即可.
解答:解:(1)∵關(guān)于x的一元二次方程(m+1)x2+2mx+m-3=0 有兩個不相等的實(shí)數(shù)根,
∴m+1≠0且△>0.
∵△=(2m)2-4(m+1)(m-3)=4(2m+3),
∴2m+3>0.
解得 m>.  
∴m的取值范圍是 m>且m≠-1.

(2)在m>且m≠-1的范圍內(nèi),最小奇數(shù)m為1.
此時,方程化為x2+x-1=0.
∵△=b2-4ac=12-4×1×(-1)=5,

∴方程的根為 ,
點(diǎn)評:此題主要考查了一元二次方程根的情況與判別式△的關(guān)系,以及一元二次方程的解法,關(guān)鍵是掌握(1)△>0?方程有兩個不相等的實(shí)數(shù)根;(2)△=0?方程有兩個相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊答案