如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為         cm2

 

【答案】

144

【解析】

試題分析:由勾股定理得AB===50,

又∵BG=30,

∴AG=AB﹣BG=20,

由△ADG∽△ABC得,==,即==

解得DG=15,AD=25,

A′D=A′G﹣DG=AG﹣GD=20﹣15=5,

由△A′DE∽△A′B′C′,可知==,

由△A′GF∽△A′C′B′,可知

根據(jù)相似三角形面積比等于相似比的平方,可知

S四邊形EFGD=S△A′FG﹣S△A′DE=S△A′B′C′S△A′B′C′=××40×30=144cm2

考點(diǎn):旋轉(zhuǎn)的性質(zhì);勾股定理;相似三角形的判定與性質(zhì).

點(diǎn)評:本題考查了旋轉(zhuǎn)圖形的面積不變,勾股定理、相似三角形的性質(zhì)的運(yùn)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定填空題(帶解析) 題型:填空題

如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為         cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《圓》中考題集(04):26.1 旋轉(zhuǎn)(解析版) 題型:填空題

如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省菏澤市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•菏澤)如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為    cm2

查看答案和解析>>

同步練習(xí)冊答案