如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+6x+c的圖象經(jīng)過點(diǎn)A(4,0)、B(﹣1,0),與y軸交于點(diǎn)C,點(diǎn)D在線段OC上,OD=t,點(diǎn)E在第二象限,∠ADE=90°,tanDAE=,EFOD,垂足為F

(1)求這個二次函數(shù)的解析式;

(2)求線段EF、OF的長(用含t的代數(shù)式表示);

(3)當(dāng)△ECA為直角三角形時(shí),求t的值.

 解:(1)二次函數(shù)y=ax2+6x+c的圖象經(jīng)過點(diǎn)A(4,0)、B(﹣1,0),

,解得,

∴這個二次函數(shù)的解析式為:y=﹣2x2+6x+8;4分

(2)∵∠EFD=∠EDA=90°

∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA

∴△EDF∽△DAO                5

,

=,

,∴EF=t

同理

DF=2,∴OF=t﹣2.8分

(3)∵拋物線的解析式為:y=﹣2x2+6x+8,

C(0,8),OC=8.

如圖,過E點(diǎn)作EMx軸于點(diǎn)M,則在RtAEM中,

EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,

當(dāng)∠CEA=90°時(shí),CE2+ AE2= AC2

   10分

當(dāng)∠ECA=90°時(shí),

CE2+ AC2= AE2

即點(diǎn)D與點(diǎn)C重合.   12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案