【題目】已知拋物線y1=ax2+2xc與直線y2=kxb交于點(diǎn)A(-1,0)、B(2,3).

(1)a、bc的值;

(2)直接寫(xiě)出當(dāng)y1y2時(shí),自變量的范圍是__________________________

(3)若點(diǎn)C是拋物線的頂點(diǎn),求△ABC的面積

【答案】

【解析】試題分析:1)利用待定系數(shù)法即可求得;
2)判斷拋物線的開(kāi)口,根據(jù)交點(diǎn)坐標(biāo)即可求得;
3)先利用配方法求出拋物線的頂點(diǎn)的坐標(biāo),設(shè)對(duì)稱軸與直線交于點(diǎn),求出 那么再根據(jù) 即可求解.

試題解析:(1)∵拋物線與直線交于點(diǎn)A(1,0)、B(2,3).

解得

a=1b=1,c=3;

(2)

∴拋物線的開(kāi)口向下,

x<1x>2時(shí),拋物線上的部分在直線的下方,

∴當(dāng)y1<y2時(shí),自變量的范圍是x<1x>2.

故答案為x<1x>2;

(3)

∴拋物線的頂點(diǎn)C的坐標(biāo)為(1,4).

設(shè)對(duì)稱軸與直線交于點(diǎn)M,

∵當(dāng)x=1時(shí),y=1+1=2,

M(1,2),

CM=42=2,

A(1,0),B(2,3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB6厘米,AD8厘米.延長(zhǎng)BC到點(diǎn)E,使CE3厘米,連接DE.動(dòng)點(diǎn)PB點(diǎn)出發(fā),以2厘米/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),連接DP.設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),△PCD為等腰直角三角形?

(2)設(shè)△PCD的面積為S(平方厘米),試確定St的關(guān)系式;

(3)當(dāng)t為何值時(shí),△PCD的面積為長(zhǎng)方形ABCD面積的

(4)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以2厘米/秒的速度沿BCCDDA向終點(diǎn)A運(yùn)動(dòng),是否存在某一時(shí)刻t,使△ABP和△DCE全等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,垂足為,直線上一動(dòng)點(diǎn)(不與點(diǎn)重合),在的右側(cè)作,使得,連接

1)求證:;

2)當(dāng)在線段上時(shí)

求證:;

, ;

3)當(dāng)CEAB時(shí),若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中是圓弧形拱橋,某天測(cè)得水面,此時(shí)圓弧最高點(diǎn)距水面

)確定圓弧所在圓的圓心.(尺規(guī)作圖,保留作圖痕跡)

)求圓弧所在圓的半徑.

)水面上升,水面寬__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為點(diǎn)B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1,

(1)求拋物線的解析式;

(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);

(3)將AOB沿x軸向右平移m個(gè)單位長(zhǎng)度(0<m<3)得到另一個(gè)三角形,將所得的三角形與ABC重疊部分的面積記為S,用m的代數(shù)式表示S,并求其最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E分別在錢(qián)段AB、AC上,CDBE交于O,已知ABAC,現(xiàn)添加以下的哪個(gè)條件仍不能判定ABE≌△ACD

A. B=∠CB. ADAEC. BECDD. BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長(zhǎng)為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對(duì)該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個(gè)與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長(zhǎng)的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B. C重合),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=BAC.設(shè)∠BAC=α,∠BCE=β.

(1)如圖1,如果∠BAC=90,∠BCE=___度;

(2)如圖2,你認(rèn)為α、β之間有怎樣的數(shù)量關(guān)系?并說(shuō)明理由。

(3)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α、β之間又有怎樣的數(shù)量關(guān)系?請(qǐng)?jiān)趥溆脠D上畫(huà)出圖形,并直接寫(xiě)出你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案