作業(yè)寶如圖,在△ABC中,AB=AC,D是BC的中點,DF⊥AC,E是DF的中點,聯(lián)結(jié)AE、BF.求證:(1)DF2=CF•AF; (2)AE⊥BF.

證明:(1)取CF的中點G,連接DG,DA,
∵D是BC的中點,AB=AC,
∴AD⊥BC,
∵DF⊥AC,
∴∠DAF=∠FDC,
∴△DAF∽△DFC,
∴AF:DF=DF:CF,
∴DF2=CF•AF;
(2)∵E是DF的中點,G是FC的中點,
∴AF:DF=EF:FG,
∴△AFE∽△DFG,
∴∠FAE=∠FDG,
∵G是FC的中點
∴在△CBF中,DG∥BF,
∴∠GDF=∠BFD,
∴∠FAE=∠BFD,
∵AF⊥DF,
∴∠FAE+∠FEA=90°,
∴∠BFD+∠FEA=90°,
∴AE⊥BF.
分析:(1)取CF的中點G,連接DG,DA,根據(jù)等腰三角形的性質(zhì)和已知條件證明△DAF∽△DFC即可;
(2))因為E是DF的中點,G是FC的中點,所以AF:DF=EF:FG,所以△AFE∽△DFG,進而證明∠FAE=∠FDG,再證明∠BFD+∠FEA=90°,即可得到AE⊥BF.
點評:本題考查了等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì)以及平行線的判定和性質(zhì),題目的綜合性強,難度不小,對學(xué)生的解題能力要求很高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案